Imágenes de páginas
PDF
EPUB

was born a male, and not a female, for astrologers have sought in vain to distinguish sexes in the sky; thirdly, I de rive from my mother a habit of body, more fit for study than other kinds of life fourthly, my parents' fortune was not large, and there was no landed property to which I might succeed and become attached; fifthly, there were the schools, and the liberality of the magistracy towards such boys as were apt for learning. But now if I am to speak of the result of my studies, what I pray can I find in the sky, even remotely alluding to it. The learned confess that several not despicable branches of philosophy have been newly extricated or amended or brought to perfection by me: but here my constellations were, not Mercury from the east, in the angle of the seventh, and in quadratures with Mars, but Copernicus, but Tycho Brahe, without whose books of observations everything now set by me in the clearest light must have remained buried in darkness; not Saturn predominating Mercury, but my Lords the Emperors Rodolph and Matthias; not Capricorn, the house of Saturn, but Upper Austria, the home of the Emperor, and the ready and unexampled bounty of his nobles to my petition. Here is that corner, not the western one of the horoscope, but on the Earth, whither, by permission of my imperial master, I have betaken myself from a too uneasy court; and whence, during these years of my life, which now tends towards its setting, emanate these Harmonies, and the other matters on which I am engaged."

66

However, it may be owing to Jupiter's ascendancy that I take greater delight in the application of geometry to physics, than in that abstract pursuit which partakes of the dryness of Saturn; and it is perhaps the gibbous moon, in the bright constellation of the Bull's forehead, which fills my mind with fantastic images."

The most remarkable thing contained in the 5th Book, is the announcement of the celebrated law connecting the mean distances of the planets with the periods of their revolution about the Sun. This law is expressed in mathematical language, by saying that the squares of the times vary as the cubes of the distances. Kepler's rapture on detecting it was unbounded, as may be * See Preliminary Treatise, p. 13.

seen from the exulting rhapsody with which he announced it. "What I prophecied two-and-twenty years ago, as soon as I discovered the five solids among the heavenly orbits - what I firmly believed long before I had seen Ptolemy's Harmonics-what I had promised my friends in the title of this book, which I named before I was sure of my discovery—what, sixteen years ago, I urged as a thing to be sought-that for which I joined Tycho Brahe, for which I settled in Prague, for which I have devoted the best part of my life to astro nomical contemplations, at length I have brought to light, and have recognized its truth beyond my most sanguine expectations. Great as is the absolute nature of Harmonics with all its details, as set forth in my third book, it is all found among the celestial motions, not indeed in the manner which I imagined, (that is not the least part of my delight,) but in another very different, and yet most perfect and excellent. It is now eighteen months since I got the first glimpse of light, three months since the dawn, very few days since the unveiled sun, most admirable to gaze on, burst out upon me. Nothing holds me; I will indulge in my sacred fury; I will triumph over mankind by the honest confession, that I have stolen the golden vases of the Egyptians*, to build up a tabernacle for my God far away from the confines of Egypt. If you forgive me, I rejoice; if you are angry, I can bear it: the die is cast, the book is written; to be read either now or by posterity, I care not which: it may well wait a century for a reader, as God has waited six thousand years for an observer."

[ocr errors]

He has told, with his usual particularity, the manner and precise moment of the discovery. "Another part of my Cosmographical Mystery,' suspended twenty-two years ago, because it was then undetermined, is completed and introduced here, after I had discovered the true intervals of the orbits, by means of Brahe's observations, and had spent the continuous toil of a long time in investigating the true proportion of the periodic times to the orbits,

Sera quidem respexit inertem,

Respexit tamen, et longo post tempore venit.

If you would know the precise moment, the first idea came across me on the 8th March of this year, 1618; but chancing

• In allusion to the Harmonics of Ptolemy.

to make a mistake in the calculation, I rejected it as false. I returned again to it with new force on the 15th May, and it has dissipated the darkness of my mind by such an agreement between this idea and my seventeen years' labour on Brahe's observations, that at first I thought I must be dreaming, and had taken my result for granted in my first assumptions. But the fact is perfect, the fact is certain, that the proportion existing between the periodic times of any two planets is exactly the sesquiplicate proportion of the mean distances of the orbits."

There is high authority for not attempting over anxiously to understand the rest of the work. Delambre sums it up as follows:-"In the music of the celestial bodies it appears that Saturn and Jupiter take the bass, Mars the tenor, the Earth and Venus the counter-tenor, and Mercury the treble." If the patience of this indefatigable historian gave way, as he confesses, in the perusal, any further notice of it here may be well excused. Kepler became engaged, in consequence of this publication, in an angry controversy with the eccentric Robert Fludd, who was at least Kepler's match in wild extravagance and mysticism, if far inferior to him in genius. It is diverting to hear each reproaching the other with obscurity.

In the "Epitome of the Copernican Astronomy," which Kepler published about the same time, we find the manner in which he endeavoured to deduce the beautiful law of periodic times, from his principles of motion and radiation of whirling forces. This work is in fact a summary of all his astronomical opinions, drawn up in a popular style in the form of question and answer. We find there a singular argument against believing, as some did, that each planet is carried round by an angel, for in that case, says Kepler, "the orbits would be perfectly circular; but the elliptic form, which we find in them, rather smacks of the nature of the lever and material necessity."

The investigation of the relation between the periodic times and distances of the planets is introduced by a query whether or not they are to be considered heavy. The answer is given in the following terms :-" Although none of the celestial globes are heavy, in the sense in which we say on earth that a stone is heavy, nor light as fire is light with us, yet have they, by reason of their_mate

riality, a natural inability to move from place to place: they have a natural inertness or quietude, in consequence of which they remain still in every situation where they are placed alone."

"P. Is it then the sun, which by its turning carries round the planets? How can the sun do this, having no hands to seize the planet at so great a distance, and force it round along with itself?– Its bodily virtue, sent forth in straight lines into the whole space of the world, serves instead of hands; and this virtue, being a corporeal species, turns with the body of the sun like a very rapid vortex, and travels over the whole of that space which it fills as quickly as the sun revolves in its very confined space round the centre.

"P. Explain what this virtue is, and belonging to what class of things?As there are two bodies, the mover and the moved, so are there two powers by which the motion is obtained. The one is passive, and rather belonging to matter, namely, the resemblance of the body of the planet to the body of the sun in its corporeal form, and so that part of the planetary body is friendly, the opposite part hostile to the sun. The other power is active, and bearing more relation to form, namely, the body of the sun has a power of attracting the planet by its friendly part, of repelling it by the hostile part, and finally, of retaining it if it be placed so that neither the one nor the other be turned directly towards the sun.

"P. How can it be that the whole body of the planet should be like or cognate to the body of the sun, and yet part of the planet friendly, part hostile to the sun?

Just as when one magnet attracts another, the bodies are cognate; but attraction takes place only on one side, repulsion on the other.

"P. Whence, then, arises that difference of opposite parts in the same body?

In magnets the diversity arises from the situation of the parts with respect to the whole. In the heavens the matter is a little differently arranged, for the sun does not, like the magnet, possess only on one side, but in all the parts of its substance, this active and energetic faculty of attracting, repelling, or retaining the planet. So that it is probable that the centre of the solar body corresponds to one extremity or pole of the magnet, and its whole surface to the other pole.

"P. If this were so, all the planets

would be restored* in the same time with the sun?-True, if this were all but it has been said already that, besides this carrying power of the sun, there is also in the planets a natural inertness to motion, which causes that, by reason of their material substance, they are inclined to remain each in its place. The carrying power of the sun, and the impotence or material inertness of the planet, are thus in opposition. Each shares the victory; the sun moves the planet from its place, although in some degree it escapes from the chains with which it was held by the sun, and so is taken hold of successively by every part of this circular virtue, or, as it may be called, solar circumference, namely, by the parts which follow those from which it has just extricated itself.

"P. But how does one planet extricate itself more than another from this violence-First, because the virtue emanating from the sun has the same degree of weakness at different distances, as the distances or the width of the circles described on these distances. This is the principal reason. Secondly, the cause is partly in the greater or less inertness or resistance of the planetary globes, which reduces the proportions to onehalf; but of this more hereafter.

[ocr errors]
[ocr errors]

P. How can it be that the virtue emanating from the sun becomes weaker at a greater distance? What is there to hurt or weaken it? Because that virtue is corporeal, and partaking of quantity, which can be spread out and rarefied. Then, since there is as much virtue diffused in the vast orb of Saturn as is collected in the very narrow one of Mercury, it is very rare and therefore weak in Saturn's orbit, very dense and therefore powerful at Mercury.

"P. You said, in the beginning of this inquiry into motion, that the periodic times of the planets are exactly in the sesquiplicate proportion of their orbits or circles: pray what is the cause of this? -Four causes concur for lengthening the periodic time. First, the length of the path; secondly, the weight or quantity of matter to be carried; thirdly, the degree of strength of the moving virtue; fourthly, the bulk or space into which is spread out the matter to be moved.

[blocks in formation]

The circular paths of the planets are in the simple ratio of the distances; the weights or quantities of matter in different planets are in the subduplicate ratio of the same distances, as has been already proved; so that with every increase of distance, a planet has more matter, and therefore is moved more slowly, and accumulates more time in its revolution, requiring already as it did more time by reason of the length of the way. The third and fourth causes compensate each other in a comparison of different planets: the simple and subduplicate proportion compound the sesquiplicate proportion, which therefore is the ratio of the periodic times."

Three of the four suppositions here made by Kepler to explain the beautiful law he had detected, are now indisputably known to be false. Neither the weights nor the sizes of the different planets observe the proportions assigned by him, nor is the force by which they are retained in their orbits in any respect similar in its effects to those attributed by him to it. The wonder which might naturally be felt that he should nevertheless reach the desired conclusion, will be considerably abated on examining the mode in which he arrived at and satisfied himself of the truth of these three suppositions. It has been already mentioned that his notions on the existence of a whirling force emanating from the sun, and decreasing in energy at increased distances, are altogether inconsistent with all the experiments and observations we are able to collect. His reason for asserting that the sizes of the different planets are proportional to their distances from the sun, was simply because he chose to take for granted that either their solidities, surfaces, or diameters, must necessarily be in that proportion, and of the three, the solidities appeared to him least liable to objection. The last element of his precarious reasoning rested upon equally groundless assumptions. Taking as a principle, that where there is a number of different things they must be different in every respect, he declared that it was quite unreasonable to suppose all the planets of the same density. He thought it indisputable that they must be rarer as they were farther from the sun, "and yet not in the proportion of their distances, for thus we should sin against the law of variety in another way, and make the quantity of matter (according to what he had just said of their bulk) the same in

all. But if we assume the ratio of the quantities of matter to be half that of the distances, we shall observe the best mean of all; for thus Saturn will be half as heavy again as Jupiter, and Jupiter half again as dense as Saturn. And the strongest argument of all is, that unless we assume this proportion of the densities, the law of the periodic times will not answer." This is the proof alluded to, and it is clear that by such reasoning any required result might be deduced from any given principles.

It may not be uninstructive to subjoin a sketch of the manner in which Newton established the same celebrated results, starting from principles of motion diametrically opposed to Kepler's, and it need scarcely be added, reasoning upon them in a manner not less different. For this purpose, a very few prefatory remarks will be found sufficient.

The different motions seen in nature are best analysed and classified by supposing that every body in motion, if left to itself, will continue to move forward at the same rate in a straight line, and by considering all the observed deviations from this manner of moving, as exceptions and disturbances occasioned by some external cause. To this supposed cause is generally given the name of Force, and it is said to be the first law of motion, that, unless acted on by some force, every body at rest remains at rest, and every body in motion proceeds uniformly in a straight line. Many employ this language, without perceiving that it involves a definition of force, on the admission of which, it is reduced to a truism. We see common instances of force in a blow, or a pull from the end of a string fastened to the body: we shall also have occasion presently to mention some forces where no visible connexion exists between the moving body and that towards which the motion takes place, and from which the force is said to proceed.

A second law of motion, founded upon experiment, is this: if a body have motion communicated to it in two directions, by one of which motions alone it would have passed through a given space in a given time, as for instance, through BC in one second, and by the other alone through any other space Be in the same time, it will, when both are given to it at the same in stant, pass in the same time (in the present instance in one second) through BC the

B

[blocks in formation]

means, according to what has been said, let it pass over the equal straight lines AB, BC, CD, DE, &c., in equal times. If we take any point S not in the line AE, and join AS, B S, &c., the triangles ASB, BS C, &c. are also equal, having a common altitude and standing on equal bases, so that if a string were conceived reaching from S to the moving body (being lengthened or shortened in each position to suit its distance from S), this string, as the body moved along A E, would sweep over equal triangular areas in equal times.

Let us now examine how far these

[graphic][subsumed][subsumed][subsumed][ocr errors][subsumed]

conclusions will be altered if the body from time to time is forced towards S. We will suppose it moving uniformly from A to B as before, no matter for the present how it got to A, or into the direction AB. If left to itself it would, in an equal time (say 1") go through B C' in the same straight line with and equal to AB. But just as it reaches B, and is beginning to move along B C', let it be suddenly pulled towards S with a motion which, had it been at rest, would have carried it in the same time, 1", through any other space B c. According to the second law of motion, its direction during this 1", in consequence of the two motions combined, will be along B C, the diagonal of the parallelogram of which B C', B c, are sides. In

this case, as this figure is drawn, BC, though passed in the same time, is longer than AB; that is to say, the body is moving quicker than at first. How is it with the triangular areas, supposed as before to be swept by a string constantly stretched between S and the body? It will soon be seen that these still remain equal, notwithstanding the change of direction, and increased swiftness. For since CC is parallel to B c, the triangles SCB, SC'B are equal, being on the same base SB, and between the same parallels SB, C C', and S C'B is equal to SBA as before, therefore SCB, SBA are equal. The body is now moving uniformly (though quicker than along A B) along B C. As before, it would in a time equal to the time of passing along B C, go through an equal space CD' in the same straight line. But if at C it has a second pull towards S, strong enough to carry it to d in the same time, its direction will change a second time to CD, the diagonal of the parallelogram, whose sides are C D', Cd; and the circumstances being exactly similar to those at the first pull, it is shewn in the same manner that the triangular area SDC=SCB=SBA.

Thus it appears, that in consequence of these intermitting pulls towards S, the body may be moving round, sometimes faster, sometimes slower, but that the triangles formed by any of the straight portions of its path (which are all described in equal times), and the lines joining S to the ends of that portion, are all equal. The path it will take depends of course, in other respects, upon the frequency and strength of the different pulls, and it might happen, if they were duly proportionate, that when at H, and moving off in the direction HA', the pull H a might be such as just to carry the body back to A, the point from which it started, and with such a motion, that after one pull more, Ab, at A, it might move along A B as it did at first. If this were so, the body would continue to move round in the same polygonal path, alternately approaching and receding from S, as long as the same pulls were repeated in the same order, and at the same intervals.

It seems almost unnecessary to remark, that the same equality which subsists between any two of these triangular areas subsists also between an equal number of them, from whatever part of the path taken; so that, for instance, the four paths AB, BC, CD, DE, cor.

responding to the four areas ASB, BS C, CSD, DSE, that is, to the area ABCDES, are passed in the same time as the four E F, FG, GH, HA, corresponding to the equal area E FGHAS. Hence it may be seen, if the whole time of revolution from A round to A again be called a year, that in half a year the body will have got to E, which in the present figure is more than half way round, and so of any other periods.

The more frequently the pulls are supposed to recur, the more frequently will the body change its direction; and if the pull were supposed constantly exerted in the direction towards S, the body would move in a curve round S, for no three successive positions of it could be in a straight line. Those who are not familiar with the methods of measuring curvilinear spaces must here be contented to observe, that the law holds, however close the pulls are brought together, and however closely the polygon is consequently made to resemble a curve: they may, if they please, consider the minute portions into which the curve is so divided, as differing insensibly from little rectilinear triangles, any equal number of which, according to what has been said above, wherever taken in the curve, would be swept in equal times. The theorem admits, in this case also, a rigorous proof; but it is not easy to make it entirely satisfactory, without entering into explanations which would detain us too long from our principal subject.

The proportion in which the pull is strong or weak at different distances from the central spot, is called "the law of the central or centripetal force," and it may be observed, that after assuming the laws of motion, our investigations cease to have anything hypothetical or experimental in them; and that if we wish, according to these principles of motion, to determine the law of force necessary to make a body move in a curve of any required form, or conversely to discover the form of the curve described, in consequence of any assumed law of force, the inquiry is purely geometrical, depending upon the nature and properties of geometrical quantities only. This distinction between what is hypothetical, and what necessary truth, ought never to be lost sight of.

As the object of the present treatise is not to teach geometry, we shall de

« AnteriorContinuar »