Imágenes de páginas
PDF
EPUB

water affects a property of curvature. I was, therefore, to excogitate causes consistent with its having this effect of curvature, and to see if a reason could be given, why the parts of the water surrounding the incident perpendicular should represent a greater density than the parts just under the perpendicular. And so the thing came round again to my former attempts, which being refuted by reason and experiment, I was forced to abandon the search after a cause. I then proceeded to measurements."

Kepler then endeavoured to connect his measurements of different quantities of refraction with the conic sections, and was tolerably well pleased with some of his results. They were however not entirely satisfactory, on which he breaks off with the following sentence: "Now, reader, you and I have been detained sufficiently long whilst I have been attempting to collect into one faggot the measure of different refractions: I acknowledge that the cause cannot be connected with this mode of measurement: for what is there in common between refractions made at the plane surfaces of transparent mediums, and mixtilinear conic sections? Wherefore, quod Deus bene vortat, we will now have had enough of the causes of this measure; and although, even now, we are perhaps erring something from the truth, yet it is better, by working on, to show our industry, than our laziness by neglect."

Notwithstanding the great length of this extract, we must add the concluding paragraph of the Chapter, directed, as we are told in the margin, against the "Tychonomasticks :”

I know how many blind men at this day dispute about colours, and how they long for some one to give some assist ance by argument to their rash insults of Tycho, and attacks upon this whole matter of refractions; who, if they had kept to themselves their puerile errors and naked ignorance, might have escaped censure; for that may happen to many great men. But since they venture forth publicly, and with thick books and sounding titles, lay baits for the applause of the unwary, (for now-a-days there is more danger from the abundance of bad books, than heretofore from the lack of good ones,) therefore let them know that a time is set for them publicly to amend their own errors. If they longer delay doing this, it shall be open, either to me or any other, to do to these unhappy meddlers in geometry as they have taken upon themselves to do with respect to men

of the highest reputation. And although this labour will be despicable, from the vile nature of the follies against which it will be directed, yet so much more necessary than that which they have undertaken against others, as he is a greater public nuisance, who endeavours to slander good and necessary inventions, than he who fancies he has found what is impossible to discover. Meanwhile, let them cease to plume themselves on the silence which is another word for their own obscurity."

Although Kepler failed, as we have seen, to detect the true law of refraction, (which was discovered some years later by Willibrord Snell, a Flemish mathematician,) there are many things well deserving notice in his investigations. He remarked, that the quantity of refraction would alter, if the height of the atmosphere should vary; and also, that it would be different at different temperatures. Both these sources of variation are now constantly taken into account, the barometer and thermometer giving exact indications of these changes. There is also a very curious passage in one of his letters to Bregger, written in 1605, on the subject of the colours in the rainbow. It is in these words:"Since every one sees a different rainbow, it is possible that some one may see a rainbow in the very place of my sight. In this case, the medium is coloured at the place of my vision, to which the solar ray comes to me through water, rain, or aqueous vapours. For the rainbow is seen when the sun is shining between rain, that is to say, when the sun also is visible. Why then do I not see the sun green, yellow, red, and blue, if vision takes place according to the mode of illumination? I will say something for you to attack or examine. The sun's rays are not coloured, except with a definite quantity of refraction. Whether you are in the optical chamber, or standing opposite glass globes, or walking in the morning dew, everywhere it is obvious that a certain and definite angle is observed, under which, when seen in dew, in glass, in water, the sun's splendour appears coloured, and under no other angle. There is no colouring by mere reflexion, without the refraction of a denser medium." How closely does Kepler appear, in this passage, to approach the discovery which forms not the least part of Newton's fame!

We also find in this work a defence of the opinion that the planets are lumi

CHAPTER IV.

Sketch of the Astronomical Theories before Kepler.

nous of themselves; on the ground that early instructor, seldom mentioned to him the inferior planets would, on the contrary the name of Galileo, without some consupposition, display phases like those of temptuous expression of dislike. These the moon when passing between us and statements have rather disturbed the the sun. The use of the telescope was chronological order of the account of not then known; and, when some years Kepler's works. We now return to the later the form of the disk of the planets year 1609, in which he published his was more clearly defined with their great and extraordinary book, “On the assistance, Kepler had the satisfaction Motions of Mars;" a work which holds of finding his assertions verified by the the intermediate place, and is in truth discoveries of Galileo, that these changes the connecting link, between the discodo actually take place. In another of veries of Copernicus and Newton. his speculations, connected with the same subject, he was less fortunate. In 1607 a black spot appeared on the face of sun, such as may almost always be seen with the assistance of the telescope, although they are seldom large enough to be visible to the unassisted eye. Kepler saw it for a short time, and mistook it for the planet Mercury, and with his usual precipitancy hastened to publish an account of his observation of this rare phenomenon. A few years later, Galileo discovered with his glasses, a great number of similar spots; and Kepler immediately retracted the opinion announced in his treatise, and acknowledged his belief that previous accounts of the same occurrence which he had seen in old authors, and which he had found great difficulty in reconciling with his more accurate knowledge of the motions of Mercury, were to be referred to a like mistake. On this occasion of the invention of the telescope, Kepler's candour and real love of truth appeared in a most favourable light. Disregarding entirely the disagreeable necessity, in consequence of the discoveries of this new instrument, of retracting several opinions which he had maintained with considerable warmth, he ranged himself at once on the side of Galileo, in opposition to the bitter and determined hostility evinced by most of those whose theories were endangered by the new views thus offered of the heavens. Kepler's quarrel with his pupil, Horky, on this account, has been mentioned in the Life of Galileo ;" and this is only a selected instance from the numerous occasions on which he espoused the same unpopular side of the argument. He published a dissertation to accompany Galileo's "Intelligencer of the Stars," in which he warmly expressed his admiration of that illustrious inquirer into nature. His conduct in this respect was the more remarkable, as some of his most intimate friends had taken a very opposite view of Galileo's merit, and seem to have laboured much to disturb their mutual regard; Mästlin especially, Kepler's

66

KEPLER had begun to labour upon these commentaries from the moment when he first made Tycho's acquaintance; and it is on this work that his reputation should be made mainly to rest. It is marked in many places with his characteristic precipitancy, and indeed one of the most important discoveries announced in it (famous among astronomers by the name of the Equable Description of Areas) was blundered upon by a lucky compensation of errors, of the nature of which Kepler remained ignorant to the very last. Yet there is more of the inductive method in this than in any of his other publications; and the unwearied perseverance with which he exhausted years in hunting down his often renewed theories, till at length he seemed to arrive at the true one, almost by having previously disproved every other, excites a feeling of astonishment nearly approaching to awe. It is wonderful how he contrived to retain his vivacity and creative fancy amongst the clouds of figures which he conjured up round him; for the slightest hint or shade of probability was sufficient to plunge him into the midst of the most laborious computations. He was by no means an accurate calculator, according to the following character which he has given of himself:-"Something of these delays must be attributed to my own temper, for non omnia possumus omnes, and I am totally unable to observe any order; what I do suddenly, I do confusedly, and if I produce any thing well arranged, it has been done ten times over. Sometimes an error of calculation committed by hurry, delays me a great length of time. I could indeed publish an infinity of things, for though my reading is confined, my imagination is abundant, but I grow dissatisfied with such confusion: I get disgusted and out of humour, and either throw them away, or put them aside to

be looked at again; or, in other words, to be written again, for that is generally the end of it. I entreat you, my friends, not to condemn me for ever to grind in the mill of mathematical calculations allow me some time for philosophical speculations, my only delight."

He was very seldom able to afford the expense of maintaining an assist ant, and was forced to go through most of the drudgery of his calculations by himself; and the most confirmed and merest arithmetician could not have toiled more doggedly than Kepler did in the work of which we are about to speak. In order that the language of his astronomy may be understood, it is necessary to mention briefly some of the older theories. When it had been discovered that the planets did not move regularly round the earth, which was supposed to be fixed in the centre of the world, a mechanism was contrived by which it was thought that the apparent irregularity could be represented, and yet the principle of uniform motion, which was adhered to with superstitious reverence, might be preserved. This, in its simplest form, consisted in supposing the planet to move uniformly in a small circle, called an epicycle, the centre of which moved with an equal angular motion in the opposite direction round the earth. The circle Dd, described by D, the centre of the epicycle, was called the deferent. For instance, if the planet was supposed to be at A when the centre of the epicycle was at D, its

[merged small][merged small][ocr errors][merged small]

position, when the centre of the epicycle had removed to d, would be at p, found by drawing dp parallel to DA. Thus, the angle adp, measuring the motion of the planet in its epicycle, would be equal

By the opposite direction" is meant, that while the motion in the circumference of one circle appeared, as viewed from its centre, to be from left to right, the other, viewed from its centre, appeared from right to left. This must be understood whenever these or similar expressions are repeated.

to DEd, the angle described by the centre of the epicycle in the deferent. The angle pEd between Ep, the direction in which a planet so moving would be seen from the earth, supposed to be at E, and Ed the direction in which it would have been seen had it been moving in the centre of the deferent, was called the equation of the orbit, the word equation, in the language of astronomy, signifying what must be added or taken from an irregularly varying quantity to make it vary uniformly.

As the accuracy of observations increased, minor irregularities were discovered, which were attempted to be accounted for by making a second deferent of the epicycle, and making the centre of a second epicycle revolve in the circumference of the first, and so on, or else by supposing the revolution in the epicycle not to be completed in exactly the time in which its centre is carried round the deferent. Hipparchus was the first to make a remark by which the geometrical representation of these inequalities was considerably simplified. In fact, if EC be taken equal to p d, Cd will be a parallelogram, and consequently Cp equal to E d, so that the machinery of the first deferent and epicycle amounts to supposing that the planet revolves uniformly in a circle round the point C, not coincident with the place of the earth. This was consequently called the excentric theory, in opposition to the former or concentric one, and was received as a great improvement. As the point dis not represented by this construction, the equation to the orbit was measured by the angle CpE, which is equal to p Ed. It is not necessary to give any account of the manner in which the old astronomers determined the magnitudes and positions of these orbits, either in the concentric or excentric theory, the present object being little more than to explain the meaning of the terms it will be necessary to use in describing Kepler's investigations.

To explain the irregularities observed in the other planets, it became necessary to introduce another hypothesis, in adopting which the severity of the principle of uniform motion was somewhat relaxed. The machinery consisted partly of an excentric deferent round E, the earth, and on it an epicycle, in which the planet revolved uniformly; but the centre of the epicycle, instead of revolving uniformly round C, the centre of the deferent,

[blocks in formation]

as it had hitherto been made to do, was supposed to move in its circumference with an uniform angular motion round a third point, Q; the necessary effect of which supposition was, that the linear motion of the centre of the epicycle ceased to be uniform. There were thus three points to be considered within the deferent; E, the place of the earth; C, the centre of the deferent, and sometimes called the centre of the orbit; and Q, called the centre of the equant, because, if any circle were described round Q, the planet would appear to a spectator at Q, to be moving equably in it. It was long uncertain what situation should be assigned to the centre of the equant, so as best to represent the ir regularities to a spectator on the earth, until Ptolemy decided on placing it (in every case but that of Mercury, the observations on which were very doubtful) so that C, the centre of the orbit, lay just half way in the straight line, joining Q, the centre of equable motion, and E, the place of the earth. This is the famous principle, known by the name of the bisection of the excentricity.

The first equation required for the planet's motion was thus supposed to be due to the displacement of E, the earth, from Q, the centre of uniform motion, which was called the excentricity of the equant: it might be represented by the angle d E M, drawing E M parallel to Qd; for clearly M would have been the place of the centre of the epicycle at the end of a time proportional to D d, had it moved with an equable angular motion round E instead of Q. This angle d E M, or its equal Ed Q, was called the equation of the centre (i. e. of the centre of the epicycle); and is clearly greater than if EQ, the excentricity of the equant, had been no greater than E C, called the excentricity of the orbit. The second equation was measured by the angle subtended at E by d, the centre of the epicycle, and p the

planet's place in its circumference: it was called indifferently the equation of the orbit, or of the argument. In order to account for the apparent stations and retrogradations of the planets, it became necessary to suppose that many revolutions in the latter were completed during one of the former. The variations of latitude of the planets were exhibited by supposing not only that the planes of their deferents were oblique to the plane of the ecliptic, and that the plane of the epicycle was also oblique to that of the deferent, but that the inclination of the two latter was continually changing, although Kepler doubts whether this latter complication was admitted by Ptolemy. In the inferior planets, it was even thought necessary to give to the plane of the epicycle two oscillatory motions on axes at right angles to each other.

The astronomers at this period were much struck with a remarkable connexion between the revolutions of the superior planets in their epicycles, and the apparent motion of the sun; for when in conjunction with the sun, as seen from the earth, they were always found to be in the apogee, or point of greatest distance from the earth, of their epicycle; and when in opposition to the Sun, they were as regularly in the perigee, or point of nearest approach of the epicycle. This correspondence between two phenomena, which, according to the old astronomy, were entirely unconnected, was very perplexing, and it seems to have been one of the facts which led Copernicus to substitute the theory of the earth's motion round the sun.

As time wore on, the superstructure of excentrics and epicycles, which had been strained into representing the appearances of the heavens at a particular moment, grew out of shape, and the natural consequence of such an artificial system was, that it became next to impossible to foresee what ruin might be produced in a remote part of it by any attempt to repair the derangements and refit the parts to the changes, as they began to be remarked in any particular point. In the ninth century of our era, Ptolemy's tables were already useless, and all those that were contrived with unceasing toil to supply their place, rapidly became as unserviceable as they. Still the triumph of genius was seen in the veneration that continued to be paid to the assumptions of Ptolemy and Hipparchus; and even when the great reformer, Coper

nicus, appeared, he did not for a long time intend to do more than slightly modify their principles. That which he found difficult in the Ptolemaic system, was none of the inconveniences by which, since the establishment of the new system, it has become common to demonstrate the inferiority of the old one; it was the displacement of the centre of the equant from the centre of the orbit that principally indisposed him against it, and led him to endeavour to represent the appearances by some other combinations of really uniform circular motions. There was an old system, called the Egyptian, according to which Saturn, Jupiter, Mars, and the Sun eirculated round the earth, the sun carrying with it, as two moons or satellites, the other two planets, Venus and Mercury. This system had never entirely lost credit: it had been maintained in the fifth century by Martianus Capella*, and indeed it was almost sanctioned, though not formally taught, by Ptolemy himself, when he made the mean motion of the sun the same as that of the centres of the epicycles of both these planets. The remark which had also been made by the old astronomers, of the connexion between the motion of the sun and the revolutions of the superior planets in their epicycles, led him straight to the expectation that he might, perhaps, produce the uniformity he sought by extending the Egyptian system to these also, and this appears to have been the shape in which his reform was originally projected. It was already allowed that the centre of the orbits of all the planets was not coincident with the earth, but removed from it by the space E C. This first change merely made EC the same for all the planets, and equal to the mean distance of the earth from the sun. This system afterwards acquired great celebrity through its adoption by Tycho Brahe, who believed it originated with himself. It might perhaps have been at this period of his researches, that Copernicus was struck with the passages in the Latin and Greek authors, to which he refers as testifying the existence of an old belief in the motion of the earth round the sun. He immediately recognised how much this alteration would further his principles of uniformity, by referring all the

Venus Mercuriusque, licet ortus occasusque quotidianos ostendunt, tamen eorum circuli terras omnino non ambiunt, sed circa solem laxiore ambitu circulantur. Denique circulorum suorum centron in sole constituunt.-De Nuptiis Philologiæ et Mercurii. Vicentiæ. 1499.

planetary motions to one centre, and did not hesitate to embrace it. The idea of explaining the daily and principal apparent motions of the heavenly bodies by the revolution of the earth on its axis, would be the concluding change, and became almost a necessary consequence of his previous improvements, as it was manifestly at variance with his principles to give to all the planets and starry worlds a rapid daily motion round the centre of the earth, now that the latter was removed from its former supposed post in the centre of the universe, and was itself carried with an annual motion round another fixed point.

The reader would, however, form an inaccurate notion of the system of Copernicus, if he supposed that it comprised no more than the theory that each planet, including the earth among them, revolved in a simple circular orbit round the sun. Copernicus was too well acquainted with the motions of the heavenly bodies, not to be aware that such orbits would not accurately represent them; the motion he attributed to the earth round the sun, was at first merely intended to account for those which were called the second inequalities of the planets, according to which they appear one while to move forwards, then backwards, and at intermediate periods, stationary, and which thenceforward were also called the optical equations, as being merely an optical illusion. With regard to what were called the first inequalities, or physical equations, arising from a real inequality of motion, he still retained the machinery of the deferent and epicycle; and all the alteration he attempted in the orbits of the superior planets was an extension of the concentric theory to supply the place of the equant, which he considered the blot of the system. His theory for this purpose is shown in the accompanying diagram, where S represents the sun,

[blocks in formation]
« AnteriorContinuar »