Imágenes de páginas
PDF
EPUB

of publishing such of their works as should be thought worthy of appearing with the common sanction. Such liberal offers were not likely to meet with an unfavourable reception: they were thankfully accepted by many well qualified to carry his design into execution, and Cesi was soon enabled formally to open his academy, the distinctive title of which he borrowed from the Lynx, with reference to the piercing sight which that animal has been supposed to possess. This quality seemed to him an appropriate emblem of those which he desired to find in his academicians, for the purpose of investigating the secrets of nature; and although, at the present day, the name may appear to border on the grotesque, it was conceived in the spirit of the age, and the fantastic names of the numberless societies which were rapidly formed in various parts of Italy far exceed whatever degree of quaintness may be thought to belong to the Lyncean name. The Inflamed-the Transformed-the Uneasy- the Humorists-the Fantastic-the Intricate the Indolent-the Senseless-the Undeceived the Valiant-the Etherial Societies are selected from a vast number of similar institutions, the names of which, now almost their sole remains, are collected by the industry of Morhof and Tiraboschi*. The Humorists are named by Morhof as the only Italian philosophical society anterior to the Lynceans; their founder was Paolo Mancino, and the distinctive symbol which they adopted was rain dropping from a cloud, with the motto Redit agmine dulci ;-their title is derived from the same metaphor. The object of their union appears to have been similar to that of the Lynceans, but they at no time attained to the celebrity to which Cesi's society rose from the moment of its incorporation. Cesi took the presidency for his life; and the celebrated Baptista Porta was appointed vice president at Naples. Stelluti acted as the legal representative of the society, with the title of procuratore. Of the other two original members Anastasio de Filiis was dead, and although Hecke returned to Italy in 1614, and rejoined the Academy, yet he was soon afterwards struck off the list in consequence of his lapsing into insanity. Among the academicians we find the names of Galileo, Fabio Co

Polyhistor Literarius, &e.-Storia della Letterat. Ital. The still existing society of Chaff, more generally known by its Italian title, Della Crusca, belongs to the same period.

lonna, Lucas Valerio, Guiducci, Welser, Giovanni Fabro, Terrentio, Virginio Cesarini, Ciampoli, Molitor, Cardinal Barberino, (nephew of Pope Urban VIII.) Stelliola, Salviati, &c.

The principal monument still remaining of the zeal and industry to which Cesi incited his academicians is the Phytobasanos, a compendium of the natural history of Mexico, which must be considered a surprising performance for the times in which it appeared. It was written by a Spaniard named Hernandez; and Reccho, who often has the credit of the whole work, made great additions to it. During fifty years the manuscript had been neglected, when Cesi discovered it, and employed Terrentio, Fabro, and Colonna, all Lynceans, to publish it enriched with their notes and emendations. Cesi himself published several treatises,two of which are extant; his Tabule Phytosophica, and a Dissertation on Bees entitled Apiarium, the only known copy of which last is in the library of the Vatican. His great work, Theatrum Naturæ, was never printed; a circumstance which tends to shew that he did not assemble the society round him for the purpose of ministering to his own vanity, but postponed the publication of his own productions to the labours of his coadjutors. This, and many other valuable works belonging to the academy existed in manuscript till lately in the Albani Library at Rome. Cesi collected, not a large, but an useful library for the use of the academy, (which was afterwards augmented on the premature death of Cesarini by the donation of his books); he filled a botanical garden with the rarer specimens of plants, and arranged a museum of natural curiosities; his palace at Rome was constantly open to the academicians; his purse and his influence were employed with equal liberality in their service.

Cesi's death, in 1632, put a sudden stop to the prosperity of the society, a consequence which may be attributed to the munificence with which he had from the first sustained it: no one could be found to fill his place in the princely manner to which the academicians were accustomed, and the society, after lingering some years under the nominal patronage of Urban VIII., gradually decayed, till, by the death of its principal members, and dispersion of the rest, it became entirely extinct*. Bianchi,

F. Colonna Phytobasanus Jano Planco Auctore. Florent, 1744.

whose sketch of the academy was almost the only one till the appearance of Odescalchi's history, made an attempt to revive it in the succeeding century, but without any permanent effect. A society under the same name has been formed since 1784, and is still flourishing in Rome. Before leaving the subject it may be mentioned, that one of the earliest notices that Bacon's works were known in Italy is to be found in a letter to Cesi, dated 1625; in which Pozzo, who had gone to Paris with Cardinal Barberino, mentions having seen them there with great admiration, and suggests that Bacon would be a fit person to be proposed as a member of their society. After Galileo's death, three of his principal followers, Viviani, Torricelli, and Aggiunti formed the plan of establishing a similar philosophical society, and though Aggiunti and Torricelli died before the scheme could be realized, Viviani pressed it forward, and, under the auspices of Ferdinand II., formed a society, which, in 1657, merged in the famous Academia del Cimento, or Experimental Academy. This latter held its occasional meetings at the palace of Ferdinand's brother, Leopold de' Medici; it was composed chiefly, if not entirely, of Galileo's pupils and friends. During the few years that this society lasted, one of the principal objects of which was declared to be the repetition and developement of Galileo's experiments, it kept up a correspondence with the principal philosophers in every part of Europe, but when Leopold was, in 1666, created a cardinal, it appears to have been dissolved, scarcely ten years after its institution. This digression may be excused in favour of so interesting an establishment as the Academia Lincea, which preceded by half a century the formation of the Royal Society of London, and Académie Françoise of Paris.

These latter two are mentioned together, probably for the first time, by Salusbury. The passage is curious in an historical point of view, and worth extracting: In imitation of these societies, Paris and London have erected theirs of Les Beaux Esprits, and of the Virtuosi: the one by the countenance of the most eminent Cardinal Richelieu, the other by the royal encouragement of his sacred Majesty that now is. The Beaux Esprits have published sundry volumes of their moral and physiological conferences,

* Nelli Saggio di Storia Literaria Fiorentina, Lucca, 1759.j

with the laws and history of their fellowship; and I hope the like in due time from our Royal Society; that so such as envie their fame and felicity, and such as suspect their ability and candor, may be silenced and disappointed in their detractions and expectations."*

CHAPTER X.

Spots on the Sun-Essay on Floating Bodies-Scheiner-Change in Sa

turn.

GALILEO did not indulge the curiosity of his Roman friends by exhibiting only the wonders already mentioned, which now began to lose the gloss of novelty, but disclosed a new discovery, which appeared still more extraordinary, and, to the opposite faction, more hateful than anything of which he had yet spoken. This was the discovery, which he first made in the month of March, 1611, of dark spots on the body of the sun. A curious fact, and one which well serves to illustrate Galileo's superiority in seeing things simply as they are, is, that these spots had been observed and recorded centuries before he existed, but, for want of careful observation, their true nature had been constantly misapprehended. One of the most celebrated occasions was in the year 807 of our era, in which a dark spot is mentioned as visible on the face of the sun during seven or eight days. It was then supposed to be Mercury. Kepler, whose astronomical knowledge would not suffer him to overlook that it was impossible that Mercury could remain so long in conjunction with the sun, preferred to solve the difficulty by supposing that, in Aimoin's original account, the expression was not octo dies (eight days), but octoties—a barbarous word, which he supposed to have been written for octies (eight times); and that the other accounts (in which the number of days mentioned is different) copying loosely from the first, had both mistaken the word, and misquoted the time which they thought they found menioned there. It is impossible to look on this explanation as satisfactory, but Kepler, who at that time did not dream of spots on the sun, was perfectly contented with it. In 1609, he himself observed upon the sun a black spot, which he in like manner mistook for Mercury, and unluckily the day, being cloudy, did

Salusbury's Math. Coll. vol. ii. London, 1664. 1 Aimoini Hist. Francorum. Parisiis. 1567.

not allow him to contemplate it sufficiently long to discover his error, which the slowness of its apparent motion would soon have pointed out.* He hastened to publish his supposed observation, but no sooner was Galileo's discovery of the solar spots announced, than he, with that candour which as much as his flighty disposition certainly characterized him at all times, retracted his former opinion, and owned his belief that he had been mistaken. In fact it is known from the more accurate theory which we now possess of Mercury's motions, that it did not pass over the sun's face at the time when Kepler thought he perceived it there.

Galileo's observations were in their consequences to him particularly unfortunate, as in the course of the controversy in which they engaged him, he first became personally embroiled with the powerful party, whose prevailing influence was one of the chief causes of his subsequent misfortunes. Before we enter upon that discussion, it will be proper to mention another famous treatise which Galileo produced soon after his return from Rome to Florence, in 1612. This is, his Discourse on Floating Bodies, which restored Archimedes' theory of hydrostatics, and has, of course, met with the opposition which few of Galileo's works failed to encounter. In the commencement, he thought it necessary to apologize for writing on a subject so different from that which chiefly occupied the public attention, and declared that he had been too closely occupied in calculating the periods of the revolutions of Jupiter's satellites to permit him to publish anything earlier. These periods he had succeeded in determining during the preceding year, whilst at Rome, and he now announced them to complete their circuits, the first in about 1 day, 18 hours; the second in 3 days, 13 hours, 20 minutes; the third in 7 days, 4 hours; and the outermost in 16 days, 18 hours. All these numbers he gave merely as approximately true, and promised to continue his observations, for the purpose of correcting the results. He then adds an announcement of his recent discovery of the solar spots, "which, as they change their situation, offer a strong argument, either that the sun revolves on itself, or that, perhaps, other stars, like Venus and Mercury, revolve about it, invisible at all other times, on account of the small distance to which they are removed from

* Mercurius in sole visus. 1609.

him." To this he afterwards subjoined, that, by continued observation, he had satisfied himself that these solar spots were in actual contact with the surface of the sun, where they are continually appearing and disappearing; that their figures were very irregular, some being very dark, and others not so black; that one would often divide into three or four, and, at other times, two, three, or more would unite into one; besides which, that they had all a common and regular motion, with which they revolved round with the sun, which turned upon its axis in about the time of a lunar month.

Having by these prefatory observations assuaged the public thirst for astronomical novelties, he ventures to introduce the principal subject of the treatise above mentioned. The question of floating bridges had been discussed at one of the scientific parties, assembled at the house of Galileo's friend Salviati, and the general opinion of the company appearing to be that the floating or sinking of a body depended principally upon its shape, Galileo undertook to convince them of their error. If he had not preferred more direct arguments, he might merely have told them that in this instance they were opposed to their favourite Aristotle, whose words are very unequivocal on the point in dispute. "Form is not the cause why a body moves downwards rather than upwards, but it does affect the swiftness with which it moves;"* which is exactly the distinction which those who called themselves Aristotelians were unable to perceive, and to which the opinions of Aristotle himself were not always true. Galileo states the discussion to have immediately arisen from the assertion of some one in the company, that condensation is the effect of cold, and ice was mentioned as an instance. On this, Galileo observed, that ice is rather water rarefied than condensed, the proof of which is, that ice always floats upon water. It was replied, that the reason of this phenomenon was, not the superior lightness of the ice, but its incapacity, owing to its flat shape, to penetrate and overcome the resistance of the water. Galileo denied this, and asserted that ice of any shape would float upon water, and that, if a

[blocks in formation]

flat piece of ice were forcibly taken to the bottom, it would of itself rise again to the surface. Upon this assertion it appears that the conversation became so clamorous, that Galileo thought it pertinent to commence his Essay with the following observation on the advantage of delivering scientific opinions in writing, "because in conversational arguments, either one or other party, or perhaps both, are apt to get overwarm, and to speak overloud, and either do not suffer each other to be heard, or else, transported with the obstinacy of not yielding, wander far away from the original proposition, and confound both themselves and their auditors with the novelty and variety of their assertions." After this gentle rebuke he proceeds with his argument, in which he takes occasion to state the famous hydrostatical paradox, of which the earliest notice is to be found in Stevin's works, a contemporary Flemish engineer, and refers it to a principle on which we shall enlarge in another chapter. He then explains the true theory of buoyancy, and refutes the false reasoning on which the contrary opinions were founded, with a variety of experiments.

The whole value and interest of experimental processes generally depends on a variety of minute circumstances, the detail of which would be particularly unsuited to a sketch like the present one. For those who are desirous of becoming more familiar with Galileo's mode of conducting an argument, it is fortunate that such a series of experiments exists as that contained in this essay; experiments which, from their simplicity, admit of being for the most part concisely enumerated, and at the same time possess so much intrinsic beauty and characteristic power of forcing conviction. They also present an admirable specimen of the talent for which Galileo was so deservedly famous, of inventing ingenious arguments in favour of his adversaries' absurd opinions before he condescended to crush them, shewing that nothing but his love of truth stood in the way of his being a more subtle sophist than any amongst them. In addition to these reasons for giving these experiments somewhat in detail, is the fact that all explanation of one of the principal phenomena to which they allude is omitted in many more modern treatises on Hydrostatics; and in some it is referred precisely to the false doctrines here confuted.

The marrow of the dispute is included in Galileo's assertion, that "The diversity of figure given to any solid cannot be in any way the cause of its absolutely sinking or floating; so that if a solid, when formed for example into a spherical figure, sinks or floats in the water, the same body will sink or float in the same water, when put into any other form. The breadth of the figure may indeed retard its velocity, as well of ascent as descent, and more and more according as the said figure is reduced to a greater breadth and thinness; but that it may be reduced to such a form as absolutely to put an end to its motion in the same fluid, I hold to be impossible. In this I have met with great contradictors who, producing some experiments, and in particular a thin board of ebony, and a ball of the same wood, and shewing that the ball in water sinks to the bottom*, and that the board if put lightly on the surface floats, have held and confirmed themselves in their opinion with the authority of Aristotle, that the cause of that rest is the breadth of the figure, unable by its small weight to pierce and penetrate the resistance of the water's thickness, which is readily overcome by the other spherical figure."-For the purpose of these experiments, Galileo recommends a substance such as wax, which may be easily moulded into any shape, and with which, by the addition of a few filings of lead, a substance may be readily made of any required specific gravity. He then declares that if a ball of wax of the size of an orange, or bigger, be made in this manner heavy enough to sink to the bottom, but so lightly that if we take from it only one grain of lead it returns to the top; and if the same wax be afterwards moulded into a broad and thin cake, or into any other figure, regular or irregular, the addition of the same grain of lead will always make it sink, and it will again rise when we remove the lead from it." But methinks I hear some of the adversaries raise a doubt upon my produced experiment: and, first, they offer to my consideration that the figure, as a figure simply, and disjunct from the matter, works no effect, but requires to be conjoined with the matter; and, moreover, not with every matter, but with those only wherewith it may be able to execute the desired operation. Just as we see by experience

*** Ebony is one of the few woods heavier than water. See Treatise on Hydrostatics.

that an acute and sharp angle is more apt to cut than an obtuse; yet always provided that both one and the other are joined with a matter fit to cut, as for instance, steel. Therefore a knife with a fine and sharp edge cuts bread or wood with much ease, which it will not do if the edge be blunt and thick; but if, instead of steel, any one will take wax and mould it into a knife, undoubtedly he will never learn the effects of sharp and blunt edges, because neither of them will cut; the wax being unable, by reason of its flexibility, to overcome the hardness of the wood and bread. And therefore, applying the like discourse to our argument, they say that the difference of figure will shew different effects with regard to floating and sinking, but not conjoined with any kind of matter, but only with those matters which by their weight are able to overcome the viscosity of the water (like the ebony which they have selected); and he that will select cork or other light wood to form solids of different figures, would in vain seek to find out what operation figure has in sinking or floating, because all would swim, and that not through any property of this or that figure, but through the debility of the matter."

"When I begin to examine one by one all the particulars here produced, I allow not only that figures, simply as such, do not operate in natural things, but also that they are never separated from the corporeal substance, nor have I ever alleged them to be stript of sensible matter: and also I freely admit, that in our en deavours to examine the diversity of accidents which depend upon the variety of figures, it is necessary to apply them to matters which obstruct not the various operations of those various figures. I admit and grant that I should do very ill if I were to try the influence of a sharp edge with a knife of wax, applying it to cut an oak, because no sharpness in wax is able to cut that very hard wood. But yet, such an experiment of this knife would not be beside the purpose to cut curded milk, or other very yielding matter; nay, in such matters, the wax is more convenient than steel for finding the difference depending on the acuteness of the angles, because milk is cut indifferently with a razor, or a blunt knife. We must therefore have regard not only to the hardness, solidity, or weight of the bodies which, under different figures, are to divide some matters asunder; but also, on the other

hand, to the resistance of the matter to be penetrated. And, since I have chosen a matter which does penetrate the resistance of the water, and in all figures descends to the bottom, my antagonists can charge me with no defect; nor (to revert to their illustration) have I attempted to test the efficacy of acuteness by cutting with matters unable to cut. I subjoin withal, that all caution, distinction, and election of matter would be superfluous and unnecessary, if the body to be cut should not at all resist the cutting: if the knife were to be used in cutting a mist, or smoke, one of paper would serve the purpose as well as one of Damascus steel; and I assert that this is the case with water, and that there is not any solid of such lightness or of such a figure, that being put on the water it will not divide and penetrate its thickness; and if you will examine more carefully your thin boards of wood, you will see that they have part of their thickness under water; and, moreover, you will see that the shavings of ebony, stone, or metal, when they float, have not only thus broken the continuity of the water, but are with all their thickness under the surface of it; and that more and more, according as the floating substance is heavier, so that a thin floating plate of lead will be lower than the surface of the surrounding water by at least twelve times the thickness of the plate, and gold will dive below the level of the water almost twenty times the thickness of the plate, as I shall shew presently."

In order to illustrate more clearly the non-resistance of water to penetration, Galileo then directs a cone to be made of wood or wax, and asserts that when it floats, either with its base or point in the water, the solid content of the part immersed will be the same, although the point is, by its shape, better adapted to overcome the resistance of the water to division, if that were the cause of the buoyancy. Or the experiment may be varied by tempering the wax with filings of lead, till it sinks in the water, when it will be found that in any figure the same cork must be added to it to raise it to the surface.— "This silences not my antagonists; but they say that all the discourse hitherto made by me imports little to them, and that it serves their turn, that they have demonstrated in one instance, and in such manner and figure as pleases them best, namely, in a board and a ball of ebony,

« AnteriorContinuar »