Imágenes de páginas
PDF
EPUB

number of infinitely small points can make a line, or an infinite number of infinitely small lines a surface, Pascal removed this verbal difficulty by considering a line as composed of an infinite number of infinitely short lines, a surface as composed of an infinite number of infinitely narrow parallelograms, and a solid of an infinite number of infinitely thin solids. But, independent of this correction, the conclusions deduced by Cavaleri are rigorously true, and his method of ascertaining the ratios of areas and solids to one another, and the theorems which he deduced from it may be considered as forming an era in mathematics.

By the application of this method, Roberval and Toricelli showed that the area of the cycloid is three times that of its generating circle, and the former extended the method of Cavaleri to the case where the powers of the terms of the arithmetical progression to be summed were fractional.

In applying the doctrine of infinitely small quantities to determine the tangents of curves, and the maxima and minima of their ordinates, both Roberval and Fermat made a near approach to the invention of fluxions-so near indeed that both Lagrange and Laplace* have pronounced the latter to be the true inventer of the differential calculus. Roberval supposed the point which describes a curve to be actuated by two motions, by the composition of which it moves in the direction of a tangent; and had he possessed the method of fluxions, he could, in every case, have determined the relative velocities of these motions, which depend on the nature of the curve, and consequently the direction of the tangent which he assumed to be in the diagonal of a parallelogram whose sides had the

* "On peut regarder Fermat," says Lagrange, "comme le premier inventeur des nouveaux calculs ;" and Laplace observes, "Il paraitque Fermat, le veritable inventeur du calcul differentiel, l'ait envisagé comme un cas particulier de celui des differences," &c.

same ratio as the velocities. But as he was able to determine these velocities only in the conic sections, &c. his ingenious method had but few appli

cations.

The labours of Peter Fermat, a counsellor of the parliament of Toulouse, approached still nearer to the fluxionary calculus. In his method of determining the maxima and minima of the ordinates of curves, he substitutes x+e for the independent variable x in the function which is to become a maximum, and as these two expressions should be equal when e becomes infinitely small or 0, he frees this equation from surds and radicals, and after dividing the whole by e, e is made = 0, and the equation for the maximum is thus obtained. Upon a similar principle he founded his method of drawing tangents to curves. But though the methods thus used by Fermat are in principle the same with those which connect the theory of tangents and of maxima and minima with the analytical method of exhibiting the differential calculus, yet it is a singular example of national partiality to consider the inventer of these methods as the inventer of the method of fluxions.

"One might be led," says Mr. Herschel," to suppose by Laplace's expression that the calculus of finite differences had then already assumed a systematic form, and that Fermat had actually observed the relation between the two calculi, and derived the one from the other. The latter conclusion would scarcely be less correct than the former. No method can justly be regarded as bearing any analogy to the differential calculus which does not lay down a system of rules (no matter on what considerations founded, by what names called, or by what extraneous matter enveloped) by means of which the second term of the development of any function of xe in powers of e, can be correctly calculated, 'quæ extendet se,' to use Newton's expression,

'citra ullum molestum calculum in terminis surdis æque ac in integris procedens.' It would be strange to suppose Fermat or any other in possession of such a method before any single surd quantity had ever been developed in a series. But, in point of fact, his writings present no trace of the kind; and this, though fatal to his claim, is allowed by both the geometers cited. Hear Lagrange's candid avowal. Il fait disparaitre dans cette equation,' that of the maximum between x and e, 'les radicaux et les fractions s'il y en à.' Laplace, too, declares that 'il savoit etendre son calcul aux fonctions irrationelles en se debarrassant des irrationalités par l'elevation des radicaux aux puissances." This is at once giving up the point in question. It is allowing unequivocally that Fermat in these processes only took a circuitous route to avoid a difficulty which it is one of the most express objects of the differential calculus to face and surmount. The whole claim of the French geometer arises from a confusion (too often made) of the calculus and its applications, the means and the end, under the sweeping head of nouveaux calculs' on the one hand, and an assertion somewhat too unqualified, advanced in the warmth and generality of a preface, on the other."* The discoveries of Fermat were improved and simplified by Hudde, Huygens, and Barrow; and by the publication of the Arithmetic of Infinites by Dr. Wallis, Savilian professor of geometry at Oxford, mathematicians were conducted to the very entrance of a new and untrodden field of discovery. This distinguished author had effected the quadrature of all curves whose ordinates can be expressed by any direct integral powers; and though he had extended his conclusions to the cases where the ordinates are xpressed by the inverse or fractional powers, yet

*Art. Mathematics, in the Edinburgh Encyclopædia, volume xiii. p. 365.

he failed in its application. Nicolas Mercator (Kauffman) surmounted the difficulty by which Wallis had been baffled, by the continued division of the numerator by the denominator to infinity, and then applying Wallis's method to the resulting positive powers. In this way he obtained, in 1667, the first general quadrature of the hyperbola, and, at the same time, gave the regular development of a function in series.

In order to obtain the quadrature of the circle, Dr. Wallis considered that if the equations of the curves of which he had given the quadrature were arranged in a series, beginning with the most simple, these areas would form another series. He saw also that the equation of the circle was intermediate between the first and second terms of the first series, or between the equation of a straight line and that of a parabola, and hence he concluded, that by interpolating a term between the first and second term of the second series, he would obtain the area of the circle. In pursuing this singularly beautiful thought, Dr. Wallis did not succeed in obtaining the indefinite quadrature of the circle, because he did not employ general exponents; but he was led to express the entire area of the circle by a fraction, the numerator and denominator of which are each obtained by the continued multiplication of a certain series of numbers.

Such was the state of this branch of mathematical science, when Newton, at an early age, directed to it the vigour of his mind. At the very beginning of his mathematical studies, when the works of Dr. Wallis fell into his hands, he was led to consider how he could interpolate the general values of the areas in the second series of that mathematician. With this view he investigated the arithmetical law of the coefficients of the series, and obtained a general method of interpolating, not only the series above referred to, but also other series. These

were the first steps taken by Newton, and, as he himself informs us, they would have entirely escaped from his memory if he had not, a few weeks before,* found the notes which he made upon the subject. When he had obtained this method, it occurred to him that the very same process was applicable to the ordinates, and, by following out this idea, he discovered the general method of reducing radical quantities composed of several tern into infinite series, and was thus led to the discovery of the celebrated Binomial Theorem. He now neglected entirely his methods of interpolation, and employed that theorem alone as the easiest and most direct method for the quadratures of curves, and in the solution of many questions which had not even been attempted by the most skilful mathematicians.

After having applied the Binomial theorem to the rectification of curves, and to the determination of the surfaces and contents of solids, and the position of their centres of gravity, he discovered the general principle of deducing the areas of curves from the ordinate, by considering the area as a nascent quantity, increasing by continual fluxion in the proportion of the length of the ordinate, and supposing the abscissa to increase uniformly in proportion to the time. In imitation of Cavalerius, he called the momentary increment of a line a point, though it is not a geometrical point, but an infinitely short line; and the momentary increment of an area or surface he called a line, though it is not a geometrical line, but an infinitely narrow surface. By thus regarding lines as generated by the motion of points, surfaces by the motions of lines, and solids by the motion of surfaces, and by considering that the ordinates, abscissæ, &c. of curves thus formed, vary according to a regular law depending on the equation of the

*These facts are mentioned in Newton's letter to Oldenburgh, October 24, 1676.

« AnteriorContinuar »