Imágenes de páginas
PDF
EPUB

Such was the state of the subject when Newton directed to it his powers of acute and accurate observation. His attention was turned only to the enlargement of the shadow, and to the three fringes which surrounded it; and he begins his observations by ascribing the discovery of these facts to Grimaldi. After taking exact measures of the diameter of the shadow of a human hair, and of the breadth of the fringes at different distances behind it, he discovered the remarkable fact that these diameters and breadths were not proportional to the distances from the hair at which they were measured. In order to explain these phenomena, Newton supposed that the rays which passed by the edge of the hair are deflected or turned aside from it, as if by a repulsive force, the nearest rays suffering the greatest, and those more remote a less degree of deflection.

[blocks in formation]

by the various inclination of the object. 2. That colours begin to appear when two pulses of light are blended so well and so near together that the sense takes them for one.

Thus, if X, fig. 10, represents a section of the hair, and AB, CD, EF, GH, &c. rays passing at different distances from X, the ray AB will be more deflected than CD, and will cross it at m, the ray CD will for the same reason cross EF at n, and EF will cross GH at o. Hence the curve or caustic formed by the intersections m, n, o, &c. will be convex outward, its curvature diminishing as it recedes from the vertex. As none of the passing light can possibly enter within this curve, it will form the boundary of the shadow of X.

The explanation given by Sir Isaac of the coloured fringes is less precise, and can be inferred only from the two following queries.

1. "Do not the rays which differ in refrangibility differ also in flexibility, and are they not, by these different inflections separated from one another, so as after separation to make the colours in the three fringes above described? And after what manner are they inflected to make those fringes?

2. "Are not the rays of light in passing by the edges and sides of bodies bent several times backwards and forwards with a motion like that of an eel? And do not the three fringes of light above mentioned arise from three such bendings?"

The idea thus indistinctly thrown out in the preceding queries has been ingeniously interpreted by Mr. Herschel in the manner represented in fig. 11, where SS are two rays passing by the edge of the body MN. These rays are supposed to undergo several bendings, as at a, b, c, and the particles of light are thrown off at one or other of the points of contrary flexure, according to the state of their fits or other circumstances. Those that are thrown outwards in the direction aA, bB, cC, dD, will produce as many caustics by their intersections as there are deflected rays; and each caustic, when received on a screen at a distance, will depict on it the brightest part or maximum of a fringe,

Fig. 11.

S S

C

M

12

In this unsatisfactory state was the subject of the inflection of light left by Sir Isaac. His inquiries were interrupted, and never again renewed; and though he himself found that the phenomena were the same, "whether the hair was encompassed with air or with any other pellucid substance," yet this important result does not seem to have shaken his conviction, that the phenomena had their origin in the action of bodies upon light.

During two sets of experiments which I made on the inflection of light, the first in 1798, and the second in 1812 and 1813, I was desirous of examining the influence of density and refractive_power over the fringes produced by inflection. I com

pared the fringes formed by gold-leaf with those formed by masses of gold, and those produced by films which gave the colours of thin plates with those formed by masses of the same substance. I examined the influence of platinum, diamond, and cork in inflecting light, the effect of non-reflecting grooves and spaces in polished metals, and of cylinders of glass immersed in a mixture of oil of cassia and oil of olives of the same refractive power; and, as the fringes had the same magnitude and character under all these circumstances, I concluded that they were not produced by any force inherent in the bodies themselves, but arose from a property of the light itself, which always showed itself when light was stopped in its progress.

Dr. Thomas Young, who had supported with great ingenuity and force of argument the undulatory theory of light, as maintained by Hooke and Huygens, was the first who gave a plausible explanation of the inflection of light. By interposing a small screen at B, fig. 10, and intercepting the rays that passed near the hair X, he was surprised to find that all the fringes within the shadow disappeared. The same effect took place when the screen intercepted the rays on the other side; and hence he concluded, that the rays on each side of the hair were necessary to the production of the inner fringes, and that the fringes were produced by the interference of the rays that passed on one side of the hair with those that passed on the other side. In order to account for the coloured fringes without the shadow, Dr. Young conceived that the rays which pass near the edge of the hair interfere with others, which he supposes may be reflected after falling very obliquely upon its edge,-a supposition which, if correct, would certainly produce fringes very similar to those actually observed.

In pursuing these researches so successfully begun by Dr. Young, M. Fresnel had the good fortune to

explain all the phenomena of inflection by means of the undulatory doctrine combined with the principle of interference. In place of transmitting the light through a small aperture, he caused it to diverge from the focus of a deep convex lens, and instead of receiving the shadow and its fringes upon a smooth white surface, as was done by Newton, he viewed them directly with his eye through a lens placed behind the shadow; and by means of a microscope he was able to measure the dimensions of the fringes with the greatest exactness. By this mode of observation he made the remarkable discovery, that the inflection of the light depended on the distance of the inflecting body from the aperture or from the focus of divergence;* the fringes being observed to dilate as the body approached that focus, and to contract as it receded from it, their relative distances from each other, and from the margin of the shadow continuing invariable. In attempting to account for the formation of the exterior fringes, M. Fresnel found it necessary to reject the supposition of Dr. Young, that they were owing to light reflected from the edge of the body. He not only ascertained that the real place of the fringe was the 17 th of a millimetre different from what it should be on that supposition, but he found that the fringes preserved the same intensity of light, whether the inflecting body had a round or a sharp edge, and even when the edge was such as not to afford suffieient light for their production. From this difficulty the undulatory theory speedily released him, and he was led by its indications to consider the exterior fringes, as produced by an infinite number of elementary waves of light emanating from a primitive wave when partly interrupted by an opaque body.

The various phenomena of inflection, which had

*This effect is so great, that at the distance of four inches from the point of divergence, the angular inflexion of the red rays of the first fringe is 12' 6", while at the distance of about twenty feet, it is only 3' 55".

« AnteriorContinuar »