Imágenes de páginas
PDF
EPUB

through the aperture, the valve is closed, the vessel reversed, and weights are added till the piston is drawn forcibly downwards. Galileo concluded that the weight of the piston, rod, and added weights, would be the measure of the force of resistance to the vacuum which he supposed would take place between the piston and lower surface of the water. The defects in this apparatus for the purpose intended are of no consequence, so far as regards the present argument, and it is perhaps needless to observe that he was mistaken in supposing the water would not descend with a piston. This experiment occasions a remark from Sagredo, that he had observed that a lifting-pump would not work when the water in the cistern had sunk to the depth of thirtyfive feet below the valve; that he thought the pump was injured, and sent for the maker of it, who assured him that no pump upon that construction would lift water from so great a depth. This story is sometimes told of Galileo, as if he had said sneeringly on this occasion that Nature's horror of a vacuum does not extend beyond thirty-five feet; but it is very plain that if he had made such an observation, it would have been seriously; and in fact by such a limitation he deprived the notion of the principal part of its absurdity. He evidently had adopted the common notion of suction, for he compares the column of water to a rod of metal suspended from its upper end, which may be lengthened till it breaks with its own weight. It is certainly very extraordinary that he failed to observe how simply this phenomena may be explained by a reference to the weight of the elastic atmosphere, which he was perfectly well acquainted with, and endeavored by the following ingen

X

ious experiment to determine :-"Take a large glass flask with a bent neck, and round its mouth tie a leathern pipe with a valve in it, through which water may be forced into the flask with a syringe without suffering any air to escape, so that it will be compressed within the bottle. It will be found difficult to force in more than about three-fourths of what the flask will hold, which must be carefully weighed. The valve must then be opened, and just so much air will rush out as would in its natural density occupy the space now filled by the water. Weigh the vessel again; the difference will show the weight of that quantity of air*." By these means, which the modern experimentalist will see were scarcely capable of much accuracy, Galileo found that air was four hundred times lighter than water, instead of ten times, which was the proportion fixed on by Aristotle. The real proportion is about 830 times.

The true theory of the rise of water in a lifting-pump is commonly dated from Torricelli's famous experiment with a column of mercury, in 1644, when he found that the greatest height at which it would stand is fourteen times less than the height at which water will stand, which is exactly the proportion of weight between water and mercury. The following curious letter from Baliani, 1630, shows that the original merit of suggesting the real cause belongs to him, and renders it still more unaccountable that Galileo, to whom it was addressed, should not at once have adopted the same view of the subject "I have believed that a vacuum may exist naturally ever since I knew that the air has sensible

* It has been recently proposed to determine the density of high-pressure steam by a process analogous to this.

weight, and that you taught me in one of your letters how to find its weight exactly, though I have not yet succeeded with that experiment. From that moment I took up the notion that it is not repugnant to the nature of things that there should be a vacuum, but merely that it is difficult to produce. To explain myself more clearly if we allow that the air has weight, there is no difference between air and water except in degree. At the bottom of the sea the weight of the water above me compresses everything around my body, and it strikes me that the same thing must happen in the air, we being placed at the bottom of its immensity; we do not feel its weight, nor the compression round us, because our bodies are made capable of supporting it. But if we were in a vacuum, then the weight of the air above our heads would be felt. It would be felt very great, but not infinite, and therefore determinable, and it might be overcome by a force proportioned to it. In fact I estimate it to be such that, to make a vacuum, I believe we require a force greater than that of a column of water thirty feet high.'

This subject is introduced by some observations on the force of cohesion, Galileo seeming to be of opinion that, although it cannot be adequately accounted for by the

66

great and principal resistance to a vacuum, yet that perhaps a sufficient cause may be found by considering every body as composed of very minute particles, between every two of which is exerted a similar resistance." This remark serves to lead to a discussion on indivisibles and infinite quantities, of which we shall merely extract what Galileo gives as a curious paradox suggested in the course of it. He supposes a basin to be formed

by scooping a hemisphere out of a cylinder, and a cone to be taken of the same depth and base as the hemisphere. It is easy to show, if the cone and scooped cylinder be both supposed to be cut by the same plane, parallel to the one on which both stand, that the area of the rig

C D E F thus discovered in the cylinder is equal to the area of the corresponding circular section A B of the cone wherever the cutting plane is supposed to be.*

He then proceeds with these remarkable words :-"“ If we raise the plane higher and higher, one of these areas terminates in the circumference of a circle, and the other in a point, for such are the upper rim of the basin and the top of the cone. Now since in the diminution of the two areas they to the very last maintain their equality to one another, it is in my thoughts proper to say that the highest and ultimate terms of such diminutions are equal, and not one infinitely bigger than the other. It seems therefore that the circumference of a large circle may be said to be equal to one single point. And why may not these be called equal if they be the last remainders and vestiges left by equal magnitudes ?"

We think no one can refuse to admit the probability, that Newton may have found in such passages as these the first germ of the idea of his prime and ultimate ratios, which afterwards became in his hands an instrument of

* Galileo also reasons in the same way on the equality of the solids standing on the cutting plane, but one is sufficient for our present purpose.

such power. As to the paradoxical result, Descartes undoubtedly has given the true answer to it in saying that it only proves that the line is not a greater area than the point is. Whilst on this subject, it may not be uninteresting to remark that something similar to the doctrine of fluxions seems to have been lying dormant in the minds of the mathematicians of Galileo's era, for Inchoffer illustrates his argument in the treatise we have already mentioned, that the Copernicans may deduce some true results from what he terms their absurd hypothesis, by observing, that mathematicians may deduce the truth that a line is length without breadth, from the false and physically impossible supposition that a point flows, and that a line is the fluxion of a point.

A suggestion that perhaps fire dissolves bodies by insinuating itself between their minute particles, brings on the subject of the violent effects of heat and light; on which Sagredo inquires, whether we are to take for granted that the effect of light does or does not require time. Simplicio is ready with an answer, that the discharge of artillery proves the transmission of light to be instantaneous, to which Sagredo cautiously replies, that nothing can be gathered from that experiment except that light travels more swiftly than sound; nor can we draw any decisive conclusion from the rising of the sun. "Who can assure us that he is not in the horizon before his rays reach our sight?" Salviati then mentions an experiment by which he endeavored to examine this question. Two observers are each to be furnished with a lantern as soon as the first shades his light, the second is to discover his, and this is to be repeated at a short distance till the observers are perfect in the prac

« AnteriorContinuar »