Imágenes de páginas
PDF
EPUB

arrive at any point P of its orbit would be proportional to, and might be represented by, the sums of all the lines that could be drawn from S to the are AP, on the same scale that the whole period of revolution would be denoted by the sum of all the lines drawn to every point of the orbit. Kepler's first attempt to verify this supposition approximately, was made by dividing the whole circumference of the orbit into 360 equal parts, and calculating the distances at every one of the points of division. Then supposing the planet to move uniformly, and to remain at the same distance from the sun during the time of passing each one of these divisions, (a supposition which manifestly would not differ much from the former one, and would coincide with it more nearly, the greater was the number of divisions taken) he proceeded to add together these calculated distances, and hoped to find that the time of arriving at any one of the divisions bore the same ratio to the whole period, as the sum of the corresponding set of distances did to the sum of the whole 360.

This theory was erroneous; but by almost miraculous good fortune, he was led by it in the following manner to the true measure. The discovery was a consequence of the tediousness of his first method, which required, in order to know the time of arriving at any point, that the circle should be subdivided, until one of the points of division fell exactly upon the given place. Kepler therefore endeavoured to discover some shorter method of representing these sums of the distances. The idea then occurred to him of employing for that purpose the area inclosed between the two distances, SA, SP, and the arc AP, in imitation of the manner in which he remembered that Archimedes had found the area of the circle, by dividing it into an infinite number of small triangles by lines drawn from the centre. He hoped therefore to find, that the time of passing from A to P bore nearly the same ratio to the whole period of revolution that the area ASP bore to the whole circle.

This last proportion is in fact accurately observed in the revolution of one body round another, in consequence of an attractive force in the central body. Newton afterwards proved this, grounding his demonstration upon laws of motion altogether irreconcileable with Kepler's opinions; and it is impossible

not to admire Kepler's singular good fortune in arriving at this correct result in spite, or rather through the means, of his erroneous principles. It is true that the labour which he bestowed unsparingly upon every one of his successive guesses, joined with his admirable candour, generally preserved him from long retaining a theory altogether at variance with observations; and if any relation subsisted between the times and distances which could any way be expressed by any of the geometrical quantities under consideration, he could scarcely have failed-it might be twenty years earlier or twenty years later,-to light upon it at last, having once put his indefatigable fancy upon this scent. But in order to prevent an over-estimate of his merit in detecting this beautiful law of nature, let us for a moment reflect what might have been his fate had he endeavoured in the same manner, and with the same perseverance, to discover a relation, where, in reality, none existed. Let us take for example the inclinations or the excentricities of the planetary orbits, among which no relation has yet been discovered; and if any exists, it is probably of too complicated a nature to be hit at a venture. If Kepler had exerted his ingenuity in this direction, he might have wasted his life in fruitless labour, and whatever reputation he might have left behind him as an industrious calculator, it would have been very far inferior to that which has procured for him the proud title of the "Legislator of the Heavens."

However this may be, the immediate consequence of thus lighting upon the real law observed by the earth in its passage round the sun was, that he found himself in possession of a much more accurate method of representing its inequalities than had been reached by any of his predecessors; and with renewed hopes he again attacked the planet Mars, whose path he was now able to consider undistorted by the illusions arising out of the motion of the earth. Had the path of Mars been accurately circular, or even as nearly approaching a circle as that of the earth, the method he chose of determining its position and size by means of three distances carefully calculated from his observed parallaxes, would have given a satisfactory result; but finding, as he soon did, that almost every set of three distances led him to a different result, he began to suspect another error in the long-received opi

nion, that the orbits of the planets must consist of a combination of circles; he therefore determined, in the first instance, to fix the distances of the planet at the apsides without any reference to the form of the intermediate orbit. Half the difference between these would, of course, be the excentricity of the orbit; and as this quantity came out very nearly the same as had been determined on the vicarious theory, it seemed clear that the error of that theory, whatever it might be, did not lie in these elements. Kepler also found that in the case of this planet likewise, the times of describing equal arcs at the apsides were proportional to its distances from the sun, and he naturally expected that the method of areas would measure the planet's motion with as much accuracy as he had found in the case of the earth. This hope was disappointed: when he calculated the motion of the planet by this method, he obtained places too much advanced when near the apsides, and too little advanced at the mean distances. He did not, on that account, immediately reject the opinion of circular orbits, but was rather inclined to suspect the principle of measurement, at which he felt that he had arrived in rather a precarious manner. He was fully sensible that his areas did not accurately represent the sums of any distances except those measured from the centre of the circle; and for some time he abandoned the hope of being able to use this substitution, which he always considered merely as an approximate representation of the true measure, the sum of the distances. But on examination he found that the errors of this substitution were nearly insensible, and those it did in fact produce, were in the contrary direction of the errors he was at this time combating. As soon as he had satisfied himself of this, he ventured once more on the supposition, which by this time had, in his eyes, almost acquired the force of demonstration, that the orbits of the planets are not circular, but of an oval form, retiring within the circle at the mean distances, and coinciding with it at the apsides.

This notion was not altogether new; it had been suggested in the case of Mercury, by Purbach, in his "Theories of the Planets." In the edition of this work published by Reinhold, the pupil of Copernicus, we read the following passage. Sixthly, it appears from what has been said, that the centre of

[ocr errors]

Mercury's epicycle, by reason of the motions above-mentioned, does not, as is the case with the other planets, describe the circumference of a circular deferent, but rather the periphery of a figure resembling a plane oval." To this is added the following note by Reinhold. "The centre of the Moon's epicycle describes a path of a lenticular shape; Mercury's on the contrary is egg-shaped, the big end lying towards his apogee, and the little end towards his perigee." The excentricity of Mercury's orbit is, in fact, much greater than that of any of the other planets, and the merit of making this first step cannot reasonably be withheld from Purbach and his commentator, although they did not pursue the inquiry so far as Kepler found himself in a condition to do.

Before proceeding to the consideration of the particular oval which Kepler fixed upon in the first instance, it will be necessary, in order to render intelligible the source of many of his doubts and difficulties, to make known something more of his theory of the moving force by which he supposed the planets to be carried round in their orbits. In conformity with the plan hitherto pursued, this shall be done as much as possible in his own words.'

"It is one of the commonest axioms in natural philosophy, that if two things always happen together and in the same manner, and admit the same measure, either the one is the cause of the other, or both are the effect of a common cause. In the present case, the increase or languor of motion invariably corresponds with an approach to or departure from the centre of the universe. Therefore, either the languor is the cause of the departure of the star, or the departure of the languor, or both have a common cause. But no one can be of opinion that there is a concurrence of any third thing to be a common cause of these two effects, and in the following chapters it will be made clear that there is no occasion to imagine any such third thing, since the two are of themselves sufficient. Now, it is not agreeable to the nature of things that activity or languor in linear motion should be the cause of distance from the centre. For, distance from the centre is conceived anteriorly to linear motion. In fact linear motion cannot exist without dis

Theoricæ novæ planetarum. G. Purbachii, Parisiis, 1553.

tance from the centre, since it requires space for its accomplishment, but distance from the centre can be conceived without motion. Therefore distance is the cause of the activity of motion, and a greater or less distance of a greater or less delay. And since distance is of the kind of relative quantities, whose essence consists in boundaries, (for there is no efficacy in relation per se without regard to bounds,) it follows that the cause of the varying activity of motion rests in one of the boundaries. But the body of the planet neither becomes heavier by receding, nor lighter by approaching. Besides, it would perhaps be absurd on the very mention of it, that an animal force residing in the moveable body of the planet for the purpose of moving it, should exert and relax itself so often without weariness or decay. It remains, therefore, that the cause of this activity and languor resides at the other boundary, that is, in the very centre of the world, from which the distances are computed. Let us continue our investigation of this moving virtue which resides in the sun, and we shall presently recognize its very close analogy to light. And although this moving virtue cannot be identical with the light of the sun, let others look to it whether the light is employed as a sort of instrument, or vehicle, to convey the moving virtue. There are these seeming contradictions:-first, light is obstructed by opaque bodies, for which reason if the moving virtue travelled on the light, darkness would be followed by a stoppage of the moveable bodies. Again, light flows out in right lines spherically, the moving virtue in right lines also, but cylindrically; that is, it turns in one direction only, from west to east; not in the opposite direction, not towards the poles, &c. But perhaps we shall be able presently to reply to these objections. In conclusion, since there is as much virtue in a large and remote circle as in a narrow and close one, nothing of the virtue perishes in the passage from its source, nothing is scattered between the source and the moveable. Therefore the efflux, like that of light, is not material, and is unlike that of odours, which are accompanied by a loss of substance, unlike heat from a raging furnace, unlike every other emanation by which mediums are filled. It remains, therefore, that as light which illuminates all earthly things, is the immaterial species of that fire which is in

the body of the sun, so this virtue, embracing and moving all the planetary bodies, is the immaterial species of that virtue which resides in the sun itself, of incalculable energy, and so the primary act of all mundane motion.-I should like to know who ever said that there was anything material in light!-Guided by our notion of the efflux of this species (or archetype), let us contemplate the more intimate nature of the source itself. For it seems as if something divine were latent in the body of the sun, and comparable to our own soul, whence that species emanates which drives round the planets; just as from the mind of a slinger the species of motion sticks to the stones, and carries them forward, even after he who cast them has drawn back his hand. But to those who wish to proceed soberly, reflections differing a little from these will be offered."

Our readers will, perhaps, be satisfied with the assurance, that these sober considerations will not enable them to form a much more accurate notion of

Kepler's meaning than the passages already cited. We shall therefore proceed to the various opinions he entertained on the motion of the planets.

He considered it as established by his theory, that the centre E of the planet's epicycle (see fig. p. 33.) moved round the circumference of the deferent Dd, according to the law of the planet's distances; the point remaining to be settled was the motion of the planet in the epicycle. If it were made to move according to the same law, so that when the centre of the epicycle reached E, the planet should be at F, taking the angle BEF equal to BSA, it has been shewn (p. 19) that the path of F would still be a circle, excentric from Dd by DA the radius of the epicycle.

But Kepler fancied that he saw many sound reasons why this could not be the true law of motion in the epicycle, on which reasons he relied much more firmly than on the indisputable fact, which he mentions as a collateral proof, that it was contradicted by the observations. Some of these reasons are subjoined: "In the beginning of the work it has been declared to be most absurd, that a planet (even though we suppose it endowed with mind) should form any notion of a centre, and a distance from it, if there be no body in that centre to serve for a distinguishing mark. And although you should say, that the planet

has respect to the sun, and knows beforehand, and remembers the order in which the distances from the sun are comprised, so as to make a perfect excentric; in the first place, this is rather far-fetched, and requires, in any mind, means for connecting the effect of an accurately circular path with the sign of an increasing and diminishing diameter of the sun. Butthere are no such means, except the position of the centre of the excentric at a given distance from the sun; and I have already said, that this is beyond the power of a mere mind. I do not deny that a centre may be imagined, and a circle round it; but this I do say, if the circle exists only in imagination, with no external sign or division, that it is not possible that the path of a moveable body should be really ordered round it in an exact circle. Besides, if the planet chooses from memory its just distances from the sun, so as exactly to form a circle, it must also take from the same source, as if out of the Prussian or Alphonsine tables, equal excentric arcs, to be described in unequal times, and to be described by a force extraneous from the sun; and thus would have, from its memory, a foreknowledge of what effects a virtue, senseless and extraneous from the sun, was about to produce: all these consequences are absurd."

"It is therefore more agreeable to reason that the planet takes no thought, either of the excentric or epicycle; but that the work which it accomplishes, or joins in effecting, is a libratory path in the diameter B b of the epicycle, in the direction towards the sun. The law is now to be discovered, according to which the planet arrives at the proper distances in any time. And indeed in this inquiry, it is easier to say what the law is not than what it is."-Here, according to his custom, Kepler enumerates several laws of motion by which the planet might choose to regulate its energies, each of which is successively condemned. Only one of them is here mentioned, as a specimen of the rest. "What then if we were to say this? Although the motions of the planet are not epicyclical, perhaps the libration is so arranged that the distances from the sun are equal to what they would have been in a real epicyclical motion. This leads to more incredible consequences than the former suppositions, and yet in the dearth of better opinions, let us for the present content ourselves with this. The greater num

ber of absurd conclusions it will be found to involve, the more ready will a physician be, when we come to the fifty-second chapter, to admit what the observations testify, that the path of the planet is not circular."

The first oval path on which Kepler was induced to fix, by these and many other similar considerations, was in the first instance very different from the true elliptical form. Most authors would have thought it unnecessary to detain their readers with a theory which they had once entertained and rejected; but Kepler's work was written on a different plan. He thus introduces an explanation of his first oval. "As soon as I was thus taught by Brahe's very accurate observations that the orbit of a planet is not circular, but more compressed at the sides, on the instant I thought that I understood the natural cause of this deflection. But the old proverb was verified in my case ;—the more haste the less speed.-For having violently laboured in the 39th chapter, in consequence of my inability to find a sufficiently probable cause why the orbit of the planet should be a perfect circle, (some absurdities always remaining with respect to that virtue which resides in the body of the planet,) and having now discovered from the observations, that the orbit is not a perfect circle, I felt furiously inclined to believe that if the theory which had been recognized as absurd, when employed in the 39th chapter for the purpose of fabricating a circle, were modulated into a more probable form, it would produce an accurate orbit agreeing with the observations. If I had entered on this course a little more warily, I might have detected the truth immediately. But, being blinded by my eagerness, and not sufficiently regardful of every part of the 39th chapter, and clinging to my first opinion, which offered itself to me with a wonderful show of probability, on account of the equable motion in the epicycle, I got entangled in new perplexities, with which we shall now have to struggle in this 45th chapter and the following ones as far as the 50th chapter."

In this theory, Kepler supposed that whilst the centre of the epicycle was moving round a circular deferent according to the law of the planets' distances (or areas) the planet itself moved equably in the epicycle, with the mean angular velocity of its centre in the deferent. In consequence of this supposition, since

at D, when the planet is at A the aphelion, the motion in the deferent is less than the mean motion, the planet will have advanced through an angle BEP greater than BE For BSA, through which the centre of the epicycle has moved; and consequently, the path will lie every where within the circle A a, except at the apsides. Here was a new train of laborious calculations to undergo for the purpose of drawing the curve AP a according to this law, and of measuring the area of any part of it. After a variety of fruitless attempts, for this curve is one of singular complexity, he was reduced, as a last resource, to suppose it insensibly different from an ellipse on the same principal axes, as an approximate means of estimating its area. Not content even with the results so obtained, and not being able to see very clearly what might be the effect of his alteration in substituting the ellipse for the oval, and in other simplifications introduced by him, he had courage enough to obtain the sums of the 360 distances by direct calculation, as he had done in the old circular theory.

In the preface to his book he had spoken of his labours under the allegory of a war carried on by him against the planet; and when exulting in the early prospects of success this calculation seemed to offer, he did not omit once more to warn his readers, in his peculiar strain, that this exultation was premature.

"Allow me, gentle reader, to enjoy so splendid a triumph for one little day (I mean through the five next chapters), meantime be all rumours suppressed of new rebellion, that our preparations may not perish, yielding us no delight. Hereafter if anything shall come to pass, we will go through it in its own time and season; now let us be merry, as then we will be bold and vigorous." At the time foretold, that is to say, at the end

of the five merry chapters, the bad news could no longer be kept a secret. It is announced in the following bulletin:"While thus triumphing over Mars, and preparing for him, as for one altogether vanquished, tabular prisons, and equated eccentric fetters, it is buzzed here and there that the victory is vain, and that the war is raging anew as violently as before. For the enemy, left at home a despised captive, has burst all the chains of the equations, and broken forth of the prisons of the tables. For no method of geometrically administering the theory of the 45th chapter was able to come near the accuracy of approximation of the vicarious theory of the 16th chapter, which gave me true equations derived from false principles. Skirmishers, disposed all round the circuit of the excentric, (I mean the true distances,) routed my forces of physical causes levied out of the 45th chapter, and shaking off the yoke, regained their liberty. And now there was little to prevent the fugitive enemy from effecting a junction with his rebellious supporters, and reducing me to despair, had I not suddenly sent into the field a reserve of new physical reasonings on the rout and dispersion of the veterans, and diligently followed, without allowing him the slightest respite, in the direction in which he had broken out."

In plainer terms, Kepler found, after this labour was completed, that the errors in longitude he was still subject to were precisely of an opposite nature to those he had found with the circle; instead of being too quick at the apsides, the planet was now too slow there, and too much accelerated in the mean distances; and the distances obtained from direct observation were everywhere greater, except at the apsides, than those furnished by this oval theory. It was in the course of these tedious investigations that he established, still more satisfactorily than he had before done, that the inclinations of the planets' orbits are invariable, and that the lines of their nodes pass through the centre of the Sun, and not, as before his time had been supposed, through the centre of the ecliptic.

When Kepler found with certainty that this oval from which he expected so much would not satisfy the observations, his vexation was extreme, not merely from the mortification of finding a theory confuted on which he had spent

« AnteriorContinuar »