Imágenes de páginas
PDF
EPUB

them what activity in the extremities of the world to press their enemy so closely! Neither are heavy bodies driven into the centre by the whirling of the first moveable, as happens in revolving water. For if we assume such a motion, either it would not be continued down to us, or otherwise we should feel it, and be carried away with it, and the earth also with us; nay, rather, we should be hurried away first, and the earth would follow; all which conclusions are allowed by our opponents to be absurd. It is therefore plain that the vulgar theory of gravity is erro

neous.

The true theory of gravity is founded on the following axioms:-Every corporeal substance, so far forth as it is corporeal, has a natural fitness for resting in every place where it may be situated by itself beyond the sphere of influence of a body cognate with it. Gravity is a mutual affection between cognate bodies towards union or conjunction (similar in kind to the magnetic virtue), so that the earth attracts a stone much rather than the stone seeks the earth. Heavy bodies (if we begin by assuming the earth to be in the centre of the world) are not carried to the centre of the world in its quality of centre of the world, but as to the centre of a cognate round body, namely, the earth; so that wheresoever the earth may be placed, or whithersoever it may be carried by its animal faculty, heavy bodies will always be carried towards it. If the earth were not round, heavy bodies would not tend from every side in a straight line towards the centre of the earth, but to different points from different sides. If two stones were placed in any part of the world near each other, and beyond the sphere of influence of a third cognate body, these stones, like two magnetic needles, would come together in the intermediate point, each approaching the other by a space proportional to the comparative mass of the other. If the moon and earth were not retained in their orbits by their animal force or some other equivalent, the earth would mount to the moon by a fifty-fourth part of their distance, and the moon fall towards the earth through the other fifty-three parts and they would there meet; assuming however that the substance of both is of the same density. If the earth should cease to attract its waters to itself, all the waters of the sea would be raised and would flow to the body of the moon. The sphere of the at

tractive virtue which is in the moon extends as far as the earth, and entices up the waters; but as the moon flies rapidly across the zenith, and the waters cannot follow so quickly, a flow of the ocean is occasioned in the torrid zone towards the westward. If the attractive virtue of the moon extends as far as the earth, it follows with greater reason that the attractive virtue of the earth extends as far as the moon, and much farther; and in short, nothing which consists of earthly substance any how constituted, although thrown up to any height, can ever escape the powerful operation of this attractive virtue. Nothing which consists of corporeal matter is absolutely light, but that is comparatively lighter which is rarer, either by its own nature, or by accidental heat. And it is not to be thought that light bodies are escaping to the surface of the universe while they are carried upwards, or that they are not attracted by the earth. They are attracted, but in a less degree, and so are driven outwards by the heavy bodies; which being done, they stop, and are kept by the earth in their own place. But although the attractive virtue of the earth extends upwards, as has been said, so very far, yet if any stone should be at a distance great enough to become sensible, compared with the earth's diameter, it is true that on the motion of the earth such a stone would not follow altogether; its own force of resistance would be combined with the attractive force of the earth, and thus it would extricate itself in some degree from the motion of the earth."

Who, after perusing such passages in the works of an author, whose writings were in the hands of every student of astronomy, can believe that Newton waited for the fall of an apple to set him thinking for the first time on the theory which has immortalized his name? An apple may have fallen, and Newton may have seen it; but such speculations as those which it is asserted to have been the cause of originating in him had been long familiar to the thoughts of every one in Europe pretending to the name of natural philosopher.

As Kepler always professed to have derived his notion of a magnetic attraction among the planetary bodies from the writings of Gilbert, it may be worth while to insert here an extract from the "New Philosophy" of that author, to show in what form he presented a similar theory of the tides, which affords the

most striking illustration of that attraction. This work was not published till the middle of the seventeenth century, but a knowledge of its contents may, in several instances, be traced back to the period in which it was written :—

"There are two primary causes of the motion of the seas-the moon, and the diurnal revolution. The moon does not act on the seas by its rays or its light. How then? Certainly by the common effort of the bodies, and (to explain it by something similar) by their magnetic attraction. It should be known, in the first place, that the whole quantity of water is not contained in the sea and rivers, but that the mass of earth (I mean this globe) contains moisture and spirit much deeper even than the sea. The moon draws this out by sympathy, so that they burst forth on the arrival of the moon, in consequence of the attraction of that star; and for the same reason, the quicksands which are in the sea open themselves more, and perspire their moisture and spirits during the flow of the tide, and the whirlpools in the sea disgorge copious waters; and as the star retires, they devour the same again, and attract the spirits and moisture of the terrestrial globe. Hence the moon attracts, not so much the sea as the subterranean spirits and humours; and the interposed earth has no more power of resistance than a table or any other dense body has to resist the force of a magnet. The sea rises from the greatest depths, in consequence of the ascending humours and spirits; and when it is raised up, it necessarily flows on to the shores, and from the shores it enters the rivers.”*

This passage sets in the strongest light one of the most notorious errors of the older philosophy, to which Kepler himself was remarkably addicted. Gilbert had asserted, in direct terms, If that the moon attracted the water, it is certain that the notion would have been stigmatized (as it was for a long time in Newton's hands) as arbitrary, occult, and unphilosophical: the idea of these subterranean humours was likely to be treated with much more indulgence. A simple statement, that when the moon was over the water the latter had a tendency to rise towards it, was thought to convey no instruction; but the assertion that the moon draws out subterranean spirits by sympathy, carried with it

* De mundo nostro sublunari, Philosophia

"Nova. Amstelodami, 1651.

25

The farther removed these humours a more imposing appearance of theory. were from common experience, the easier it became to discuss them in vague and general language; and those who called themselves philosophers could endure to hear attributes bestowed on these fictitious elements which revolted their imaginations when applied to things of whose reality at least some evidence existed.

system of Tycho Brahe, which was idenIt is not necessary to dwell upon the tical, as we have said, with one rejected by Copernicus, and consisted in making with it all the other planets revolving the sun revolve about the earth, carrying about him. Tycho went so far as to deny the rotation of the earth to explain the vicissitudes of day and night, but even his favourite assistant Longomontanus differed from him in this part of his theory. The great merit of Tycho Brahe, and the service he rendered to astronomy, was entirely independent of any theory; consisting in the vast accumulation of observations made by him during a residence of fifteen years at Uraniburg, with the assistance of instruments, and with a degree of care, very far superior to anything known before his time in practical astronomy. Kepler is careful repeatedly to remind us,that withdone nothing. The degree of reliance that out Tycho's observations he could have might be placed on the results obtained by observers who acknowledged their inferiority to Tycho Brahe, may be gathered from an incidental remark of Kepler to Longomontanus. He had been examining Tycho's registers, and had occasiontimes to 4' in the right ascensions of the ally found a difference amounting someon the same night. same planet, deduced from different stars Longomontanus it was impossible to be always correct could not deny the fact, but declared that within such limits. The reader should the observations, when endeavouring to never lose sight of this uncertainty in estimate the difficulty of finding a theory that would properly represent them.

at Prague, he found him and LongomonWhen Kepler first joined Tycho Brahe ing the theory of Mars, and accordingly tanus very busily engaged in correctit was this planet to which he also first directed his attention. They had formed a catalogue of the mean oppositions of Mars during twenty years, and had discoVered a position of the equant, which (as they said) represented them with tolerable

[ocr errors]

exactness. On the other hand, they were much embarrassed by the unexpected difficulties they met in applying a system which seemed on the one hand so accurate, to the determination of the latitudes, with which it could in no way be made to agree. Kepler had already suspected the cause of this imperfection, and was confirmed in the view he took of their theory, when, on a more careful examination, he found that they overrated the accuracy even of their longitudes. The errors in these, instead of amounting as they said, nearly to 2', rose sometimes above 21'. In fact they had reasoned ill on their own principles, and even if the foundations of their theory had been correctly laid, could not have arrived at true results. But Kepler had satisfied himself of the contrary, and the following diagram shews the nature of the first alteration he introduced, not perhaps so celebrated as some of his later discoveries, but at least of equal consequence to astronomy, which could never have been extricated from the confusion into which it had fallen, till this important change had been effected. The practice of Tycho Brahe, indeed of all astronomers till the time of Kepler, had been to fix the position of the planet's orbit and equant from observations on its mean oppositions, that is to say, on the times when it was precisely six signs or half a circle distant from the mean place of the sun. In the annexed figure, let S represent the sun, C the centre of the earth's orbit, T t.

[ocr errors][ocr errors][merged small][merged small]

Tycho Brahe's practice amounted to this, that if Q were supposed the place of the centre of the planet's equant, the centre of P pits orbit was taken in Q C, and not in QS, as Kepler suggested that it ought to Le taken. The consequence of this erroneous practice was, that the observa

tions were deprived of the character for which oppositions were selected, of being entirely free from the second inequalities. It followed therefore that as part of the second inequalities were made conducive towards fixing the relative position of the orbit and equant, to which they did not naturally belong, there was an additional perplexity in accounting for the remainder of them by the size and motion of the epicycle. As the line of nodes of every planet was also made to pass through Cinstead of S, there could not fail to be corresponding errors in the latitudes. It would only be in the rare case of an opposition of the planet in the line C S, that the time of its taking place would be the same, whether O, the centre of the orbit, was placed in CQ or S Q. Every other opposition would involve an error, so much the greater as it was observed at a greater distance from the line CS.

It was long however before Tycho Brahe could be made to acquiesce in the propriety of the proposed alteration; and, in order to remove his doubts as to the possibility that a method could be erroneous which, as he still thought, had given him such accurate longitudes, Kepler undertook the ungrateful labour of the first part of his "Commentaries." He there shewed, in the three systems of Copernicus, Tycho Brahe, and Ptolemy, and in both the concentric and excentric theories, that though a false position were given to the orbit, the longitudes of a planet might be so represented, by a proper position of the centre of the equant, as never to err in oppositions above 5' from those given by observation; though the second inequalities and the latitudes would thereby be very greatly deranged.

The change Kepler introduced, of observing apparent instead of mean oppositions, made it necessary to be very accurate in his reductions of the planet's place to the ecliptic; and in order to be able to do this, a previous knowledge of the parallax of Mars became indispensable. His next labour was therefore directed to this point; and finding that the assistants to whom Tycho Brahe had previously committed this labour had performed it in a negligent and imperfect manner, he began afresh with Tycho's original observations. Having satisfied himself as to the probable limits of his errors in the parallax on which he finally fixed, he proceeded to determine the inclination of the orbit and

the position of the line of nodes. In all these operations his talent for astronomical inquiries appeared pre-eminent in a variety of new methods by which he combined and availed himself of the observations; but it must be sufficient merely to mention this fact, without entering into any detail. One important result may be mentioned, at which he arrived in the course of them, the constancy of the inclination of the planet's orbit, which naturally strengthened him in his new theory.

Having gone through these preliminary inquiries, he came at last to fix the proportions of the orbit; and, in doing so, he determined, in the first instance, not to assume, as Ptolemy appeared to have done arbitrarily, the bisection of the excentricity, but to investigate its proportion along with the other elements of the orbit, which resolution involved him in much more laborious calculations. After he had gone over all the steps of his theory no less than seventy times-an appalling labour,especially if we remember that logarithms were not then invented-his final result was, that in 1587, on the 6th of March, at 7 23', the longitude of the aphelion of Mars was 4 28° 48′ 55"; that the planet's mean longitude was 6° 0° 51′ 35′′; that if the semidiameter of the orbit was taken at 100000, the excentricity was 11332; and the excentricity of the equant 18564. He fixed the radius of the greater epicycle at 14988, and that of the smaller at 3628.

When he came to compare the longitudes as given by this, which he afterwards called the vicarious theory, with the observations at opposition, the result seemed to promise him the most brilliant success. His greatest error did not exceed 2'; but, notwithstanding these flattering anticipations, he soon found by a comparison of longitudes out of opposition and of latitudes, that it was yet far from being so complete as he had imagined, and to his infinite vexation he soon found that the labour of four years, which he had expended on this theory, must be considered almost entirely fruitless. Even his favourite principle of dividing the excentricity in a different ratio from Ptolemy, was found to lead him into greater error than if he had retained the old bisection. By restoring that, he made his latitudes more accurate, but produced a corresponding change for the worse in his longitudes; and although the errors of 8', to which they now

amounted, would probably have been disregarded by former theorists, Kepler could not remain satisfied till they were accounted for. Accordingly he found himself forced to the conclusion that one of the two principles on which this theory rested must be erroneous; either the orbit of the planet is not a perfect circle, or there is no fixed point within it round which it moves with an uniform angular motion. He had once before admitted the possibility of the former of these facts, conceiving it possible that the motion of the planets is not at all curvilinear, but that they move in polygons round the sun, a notion to which he probably inclined in consequence of his favourite harmonics and geometrical figures.

In consequence of the failure of a theory conducted with such care in all its practical details, Kepler determined that his next trial should be of an entirely different complexion. Instead of first satisfying the first inequalities of the planet, and then endeavouring to account for the second inequalities, he resolved to reverse the process, or, in other words, to ascertain as accurately as possible what part of the planet's apparent motion should be referred solely to the optical illusion produced by the motion of the earth, before proceeding to any inquiry of the real inequality of the planet's proper motion. It had been hitherto taken for granted, that the earth moved equably round the centre of its orbit; but Kepler, on resuming the consideration of it, recurred to an opinion he had entertained very early in his astronomical career (rather from his conviction of the existence of general laws, than that he had then felt the want of such a supposition), that it required an equant distinct from its orbit no less than the other planets. He now saw, that if this were admitted, the changes it would everywhere introduce in the optical part of the planet's irregularities might perhaps relieve him from the perplexity in which the vicarious theory had involved him. Accordingly he applied himself with renewed assiduity to the examination of this important question, and the result of his calculations (founded principally on observations of Mars' parallax) soon satisfied him not only that the earth's orbit does require such an equant, but that its centre is placed according to the general law of the bisection of the excentricity which he had previously found

indispensable in the other planets. This was an innovation of the first magnitude, and accordingly Kepler did not venture to proceed farther in his theory, till by evidence of the most varied and satisfactory nature, he had established it beyond the possibility of cavil.

It may be here remarked, that this principle of the bisection of the eccentricity, so familiar to the Ptolemaic astronomers, is identical with the theory afterwards known by the name of the simple elliptic hypothesis, advocated by Seth Ward and others. That hypothesis consisted in supposing the sun to be placed in one focus of the elliptic orbit of the planet, whose angular motion was uniform round the other focus. In Ptolemaic phraseology, that other focus was the centre of the equant, and it is well known that the centre of the ellipse lies in the middle point between the two foci.

It was at this period also, that Kepler first ventured upon the new method of representing inequalities which terminated in one of his most celebrated discoveries. We have already seen, in the account of the "Mysterium Cosmographicum," that he was speculating, even at that time, on the effects of a whirling force exerted by the sun on the planets with diminished energy at increased distances, and on the proportion observed between the distances of the planets from the sun, and their periods of revolution. He seems even then to have believed in the possibility of discovering a relation between the times and distances in different planets. Another analogous consequence of his theory of the radiation of the whirling force would be, that if the same planet should recede to a greater distance from the central body, it would be acted on by a diminished energy of revolution, and consequently, a relation might be found between the velocity at any point of its orbit, and its distance at that point from the sun. Hence he expected to derive a more direct and natural method of calculating the inequalities, than from the imaginary equant. But these ingenious ideas had been checked in the outset by the erroneous belief which Kepler, in common with other astronomers, then entertained of the coincidence of the earth's equant with its orbit; in other words, by the belief that the earth's linear motion was uniform, though it was known not to remain constantly at the same distance from the sun. As soon as this prejudice

[blocks in formation]

orbit A B a b, Q the centre of the equant represented by the equal circle D E de, AB, ab, two equal small arcs described by the planet at the apsides of its orbit: then, according to Ptolemy's principles, the arc DE of the equant would be proportional to the time of passing along AB, on the same scale on which de would represent the time of passing through the equal arc ab.

QD: QA:: DE: A B, nearly; and because QS is bisected in C, QA, CA or Q D, and SA, are in arithmetical proportion: and, therefore, since an arithmetical mean, when the difference is small, does not differ much from a geometrical mean, QD: QA::SA: QD, nearly. Therefore, DE:AB:: SA: Q D, nearly, and in the same manner de ab::Sa: Qd nearly; and therefore DE: de:: SA: Sa nearly. Therefore at the apsides, the times of passing over equal spaces, on Ptolemy's theory, are nearly as the distances from the sun, and Kepler, with his usual hastiness, immediately concluded that this was the accurate and general law, and that the errors of the old theory arose solely from having departed from it.

It followed immediately from this assumption, that after leaving the point A, the time in which the planet would

« AnteriorContinuar »