Imágenes de páginas
PDF
EPUB

chineri, his son's father-in-law, he says: "The hernia has returned worse than at first my pulse is intermitting, accompanied with a palpitation of the heart; an immeasurable sadness and melancholy; an entire loss of appetite; I am hateful to myself; and in short I feel that I am called incessantly by my dear daughter. In this state, I do not think it advisable that Vincenzo should set out on his journey, and leave me, when every hour something may occur, which would make it expedient that he should be here." In this extremity of ill health, Galileo requested leave to go to Florence for the advantage of medical assistance; but far from obtain ing permission, it was intimated that any additional importunities would be noticed by depriving him of the partial liberty he was then allowed to enjoy. After several years confinement at Arcetri, during the whole of which time he suffered from continual indisposition, the inquisitor Fariano wrote to him in 1638, that the Pope permitted his removal to Florence, for the purpose of recovering his health; requiring him at the same time to present himself at the Office of the Inquisition, where he would learn the conditions on which this favour had been granted. These were that he should neither quit his house nor receive his friends there; and so closely was the letter of these instructions adhered to, that he was obliged to obtain a special permission to go out to attend mass during Passion week. The strictness with which all personal intercourse with his friends was interrupted, is manifest from the result of the following letter from the Duke of Tuscany's secretary of state to Nicolini, his ambassador at Rome. "Signor Galileo Galilei, from his great age and the illnesses which afflict him, is in a condition soon to go to another world; and although in this the eternal memory of his fame and value is already secured, yet his Highness is greatly desirous that the world should sustain as little loss as possible by his death; that his labours may not perish, but for the public good may be brought to that perfection which he will not be able to give them. He has in his thoughts many things worthy of him, which he cannot be prevailed on to communicate to any but Father Benedetto Castelli, in whom he has entire confidence. His Highness wishes therefore that you should see Castelli, and induce him to procure leave

to come to Florence for a few months for this purpose, which his Highness has very much at heart; and if he obtains permission, as his Highness hopes, you will furnish him with money and every thing else he may require for his journey." Castelli, it will be remembered, was at this time salaried by the court of Rome. Nicolini answered that Castelli had been himself to the Pope to ask leave to go to Florence. Urban immediately intimated his suspicions that his design was to see Galileo, and upon Castelli's stating that certainly it would be impossible for him to refrain from attempting to see him, he received permission to visit him in the company of an officer of the Inquisition. At the end of some months Galileo was remanded to Arcetri, which he never again quitted.

In addition to his other infirmities, a disorder which some years before had affected the sight of his right eye returned in 1636; in the course of the ensuing year the other eye began to fail also, and in a few months he became totally blind. It would be difficult to find any even among those who are the most careless to make a proper use of the invaluable blessing of sight, who could bear unmoved to be deprived of it, but on Galileo the loss fell with peculiar and terrible severity; on him who had boasted that he would never cease from using the senses which God had given him, in declaring the glory of his works, and the business of whose life had been the splendid fulfilment of that undertaking. "The noblest eye is darkened," said Castelli, “which nature ever made: an eye so privileged, and gifted with such rare qualities, that it may with truth be said to have seen more than all of those who are gone, and to have opened the eyes of all who are to come." His own patience and resignation under this fatal calamity are truly wonderful; and if occasionally a word of complaint escaped him, it was in the chastened tone of the following expressions--" Alas! your dear friend and servant Galileo has become totally and irreparably blind; so that this heaven, this earth, this universe, which with wonderful observations I had enlarged a hundred and thousand times beyond the belief of by-gone ages, henceforward for me is shrunk into the narrow space which I myself fill in it. So it pleases God: it shall therefore please me also." Hopes were at first enter

tained by Galileo's friends, that the blindness was occasioned by cataracts, and that he might look forward to relief from the operation of couching; but it very soon appeared that the disorder was not in the humours of the eye, but in a cloudiness of the cornea, the symptoms of which all external remedies failed to alleviate.

As long as the power was left him, he had indefatigably continued his astronomical observations. Just before his sight began to decay, he had observed a new phenomenon in the moon, which is now known by the name of the moon's libration, the nature of which we will shortly explain. A remarkable circumstance connected with the moon's motion is, that the same side is always visible from the earth, showing that the moon turns once on her own axis in exactly the time of her monthly revolution. But Galileo, who was by this time familiar with the whole of the moon's visible surface, observed that the above-mentioned effect does not accurately take place, but that a small part on either side comes alternately forward into sight, and then again recedes, according to the moon's various positions in the heavens. He was not long in detecting one of the causes of this apparent libratory or rocking motion. It is partly occasioned by our distance as spectators from the centre of the earth, which is also the centre of the moon's motion. In consequence of this, as the moon rises in the sky we get an additional view of the lower half, and lose sight of a small part of the upper half which was visible to us while we were looking down upon her when low in the horizon. The other cause is not quite so simple, nor is it so certain that Galileo adverted to it: it is however readily in telligible even to those who are unacquainted with astronomy, if they will receive as a fact that the monthly motion of the moon is not uniform, but that she moves quicker at one time than another, whilst the motion of rotation on her own axis, like that of the earth, is perfectly uniform. A very little reflection will show that the observed phenomenon

Frisi says that Galileo did not perceive this conclusion (Elogio del Galileo); but see The Dial. on the System, Dial. 1. pp. 61, 62, 85. Edit. 1744. Plutarch says, (De Placitis Philos. lib. ii. c. 28.) that the Pythagoreans believed the moon to have inhabitants fifteen times as large as men, and that their day is fifteen times as long as ours. It seems probable, that the former of these opinions was engrafted on the latter, which is true, and implies a perception of the fact in the text.

will necessarily follow. If the moon did not turn on her axis, every side of her would be successively presented, in the course of a month, towards the earth; it is the motion of rotation which tends to carry the newly discovered parts out of sight.

Let us suppose the moon to be in that part of her orbit where she moves with her average motion, and that she is moving towards the part where she moves most quickly. If the motion in the orbit were to remain the same all the way round, the motion of rotation would be just sufficient at every point to bring round the same part of the moon directly in front of the earth. But since, from the supposed point, the moon is moving for some time round the earth with a motion continually growing quicker, the motion of rotation is not. sufficiently quick to carry out of sight the entire part discovered by the motion of translation. We therefore get a glimpse of a narrow strip on the side from which the moon is moving, which strip grows broader and broader, till she passes the point where she moves most swiftly, and reaches the point of average swiftness on the opposite side of her orbit. Her motion is now continually growing slower, and therefore from this point the motion of rotation is too swift, and carries too much out of sight, or in other words, brings into sight a strip on the side towards which the moon is moving. This increases till she passes the point. of least swiftness, and arrives at the point from which we began to trace her course, and the phenomena are repeated in the same order.

This interesting observation closes the long list of Galileo's discoveries in the heavens. After his abjuration, he ostensibly withdrew himself in a great measure from his astronomical pursuits, and employed himself till 1636 principally with his Dialogues on Motion, the last work of consequence that he published. In that year he entered into correspondence with the Elzevirs, through his friend Micanzio, on the project of printing a complete edition of his writings. Among the letters which Micanzio wrote on the subject is one intimating that he had enjoyed the gratification, in his quality of Theologian to the Republic of Venice, of refusing his sanction to a work written against Galileo and Copernicus. The temper however in which this refusal was an

[ocr errors]

nounced, contrasts singularly with that of the Roman Inquisitors. "A book was brought to me which a Veronese Capuchin has been writing, and wished to print, denying the motion of the earth. I was inclined to let it go, to make the world laugh, for the ignorant beast entitles every one of the twelve arguments which compose his book, An irrefragable and undeniable demonstration,' and then adduces nothing but such childish trash as every man of sense has long discarded. For instance, this poor animal understands so much geometry and mathematics, that he brings forward as a demonstration, that if the earth could move, having nothing to support it, it must necessarily fall. He ought to have added that then we should catch all the quails. But when I saw that he speaks indecently of you, and has had the impudence to put down an account of what passed lately, saying that he is in possession of the whole of your process and sentence, I desired the man who brought it to me to go and be hanged. But you know the ingenuity of impertinence; I suspect he will succeed elsewhere, because he is so enamoured of his absurdities, that he believes them more firmly than his Bible."

After Galileo's condemnation at Rome, he had been placed by the Inquisition in the list of authors the whole of whose writings, edita et edenda,' were strictly forbidden. Micanzio could not even obtain permission to reprint the Essay on Floating Bodies, in spite of his protestations that it did not in any way relate to the Copernican theory. This was the greatest stigma with which the Inquisition were in the habit of branding obnoxious authors; and, in consequence of it, when Galileo had completed his Dialogues on Motion, he found great difficulty in contriving their publication, the nature of which may be learned from the account which Pieroni sent to Galileo of his endeavours to print them in Germany. He first took the manuscript to Vienna, but found that every book printed there must receive the approbation of the Jesuits; and Galileo's old antagonist, Scheiner, happening to be in that city, Pieroni feared lest he should interfere to prevent the publication altogether, if the knowledge of it should reach him. Through the intervention of Cardinal Dietrichstein, he therefore got permission to have it printed at Ölmutz, and that it should be approved by a Dominican, so as to

keep the whole business a secret from Scheiner and his party; but during this negociation the Cardinal suddenly died, and Pieroni being besides dissatisfied with the Olmutz type, carried back the manuscript to Vienna, from which he heard that Scheiner had gone into Silesia. A new approbation was there procured, and the work was just on the point of being sent to press, when the dreaded Scheiner re-appeared in Vienna, on which Pieroni again thought it advisable to suspend the impression till his departure. In the mean time his own duty as a military architect in the Emperor's service carried him to Prague, where Cardinal Harrach, on a former occasion, had offered him the use of the newly-erected University press. But Harrach happened not to be at Prague, and this plan like the rest became abortive. In the meantime Galileo, wearied with these delays, had engaged with Louis Elzevir, who undertook to print the Dialogues at Amsterdam.

It is abundantly evident from Galileo's correspondence that this edition was printed with his full concurrence, although, in order to obviate further annoyance, he pretended that it was pirated from a manuscript copy which he sent into France to the Comte de Noailles, to whom the work is dedicated. The same dissimulation had been previously thought necessary, on occasion of the Latin translation of "The Dialogues on the System," by Bernegger, which Galileo expressly requested through his friend Deodati, and of which he more than once privately signified his approbation, presenting the translator with a valuable telescope, although he publicly protested against its appearance. The story which Bernegger introduced in his preface, tending to exculpate Galileo from any share in the publication, is by his own confession a mere fiction. Noailles had been ambassador at Rome, and, by his conduct there, well deserved the compliment which Galileo paid him on the present occasion.

As an introduction to the account of this work, which Galileo considered the best he had ever produced, it will become necessary to premise a slight sketch of the nature of the mechanical philosophy which he found prevailing, nearly as it had been delivered by Aristotle, with the same view with which we introduced specimens of the astronomical opinions current when Galileo began to write on that subject: they serve to show the nature

[blocks in formation]

Ir is generally difficult to trace any branch of human knowledge up to its origin, and more especially when, as in the case of mechanics, it is very closely connected with the immediate wants of mankind. Little has been told to us when we are informed that so soon as a man might wish to remove a heavy stone, "he would be led, by natural instinct, to slide under it the end of some long instrument, and that the same instinct would teach him either to raise the further end, or to press it downwards, so as to turn round upon some support placed as near to the stone as possible*." Montucla's history would have lost nothing in value, if, omitting "this philosophical view of the birth of the art," he had contented himself with his previous remark, that there can be little doubt that men were familiar with the use of mechanical contrivances long before the idea occurred of enumerating or describing them, or even of examining very closely the nature and limits of the aid they are capable of affording. The most careless observer indeed could scarcely overlook that the weights heaved up with a lever, or rolled along a slope into their intended places, reached them more slowly than those which the workmen could lift directly in their hands; but it probably needed a much longer time to enable them to see the exact relation which, in these and all other machines, exists between the increase of the power to move, and the decreasing swiftness of the thing moved. In the preface to Galileo's Treatise on Mechanical Science, published in 1592, he is at some pains to set in a clear light the real advantages belonging to the use of machines, "which (says he) I have thought it necessary to do, because, if I mistake not, I see almost all mechanics deceiving themselves in the belief that, by the help of a machine, they can raise a greater weight than they are able to lift by the exertion of the

Histoire des Mathématiques, vol. i. p. 97.

same force without it.-Now if we take any determinate weight, and any force, and any distance whatever, it is beyond doubt that we can move the weight to that distance by means of that force; because even although the force may be exceedingly small, if we divide the each of which is not too much for our weight into a number of fragments, force, and carry these pieces one by one, at length we shall have removed the whole weight; nor can we reasonably say at the end of our work, that this great weight has been moved and carried away by a force less than itself, unless we add that the force has passed several times over the space through which the whole weight has gone but once. From which it appears that the velocity of the force (understanding by velocity the space gone through in a given time) has been as many times greater than that of the weight, as the weight is greater than the force: nor can we on that account say that a great force is overcome by a small one, contrary to nature: then only might we say that nature is overcome when a small force moves a great weight as swiftly as itself, which we assert to be absolutely impossible with any machine either already or hereafter to be contrived. But since it may occasionally happen that we have but a small force, and want to move a great weight without dividing it into pieces, then we must have recourse to a machine by means of which we shall remove the given weight, with the given force, through the required space. But nevertheless the force as before will have to travel over that very same space as many times repeated as the weight surpasses its power, so that, at the end of our work, we shall find that we have derived no other benefit from our machine than that we have carried away the same weight altogether, which if divided into pieces we could have carried without the machine, by the same force, through the same space, in the same time. This is one of the advantages of a machine, because it often happens that we have a lack of force but abundance of time, and that we wish to move great weights all at once."

This compensation of force and time has been fancifully personified by saying that Nature cannot be cheated, and in scientific treatises on mechanics, is called the "principle of virtual velocities," consisting in the theorem that two weights will balance each other on any

machine, no matter how complicated or intricate the connecting contrivances may be, when one weight bears to the other the same proportion that the space through which the latter would be raised bears to that through which the former would sink, in the first instant of their motion, if the machine were stirred by a third force. The whole theory of machines consists merely in generalizing and following out this principle into its consequences; combined, when the machines are in a state of motion, with another principle equally elementary, but to which our present subject does not lead us to allude more particularly.

It is true, that in the last mentioned treatise, Aristotle has given other reasons which belong to a very different kind of philosophy, and which may lead us to doubt whether he fully saw the force of the one we have just quoted. It appeared to him not wonderful that so many mechanical paradoxes (as he called them) should be connected with circular motion, since the circle itself seemed of so paradoxical a nature. "For, in the first place, it is made up of an immoveable centre, and a moveable radius, qualities which are contrary to each other. 2dly. Its circumference is both convex and concave. 3dly. The motion by which it is described is both forward and backward, for the describing radius comes back to the place from which it started. 4thly. The radius is one; but every point of it moves in describing the circle with a different degree of swiftness."

The credit of making known the principle of virtual velocities is universally given to Galileo; and so far deservedly, that he undoubtedly perceived the importance of it, and by introducing it everywhere into his writings succeeded in recommending it to others; so that five and twenty years after his death, Borelli, who had been one of Galileo's pupils, calls it " that mechanical principle with which everybody is so familiar," and from that time to the present it has continued to be taught as an elementary truth in most systems of mechanics. But although Galileo had the merit in this, as in so many other cases, of familiarizing and reconciling the world to the reception of truth, there are remarkable traces before his time of the employment of this same principle, some of which have been strangely disregarded. Lagrange asserts that the ancients were entirely ignorant of the principle of virtual velocities, although Galileo, to whom he refers it, distinctly mentions that he himself found it in the writings of Aristotle. Montucla quotes a passage from Aristotle's Physics, in which the law is stated generally, but adds that he did not perceive its immediate application to the lever, and other machines. The passage to which Galileo alludes is in Aristotle's Mechanics, where, in discussing the properties of the lever, he says expressly, the same force will raise a greater weight, in proportion as the force is applied at a greater distance from the fulcrum, and the reason, as I have already said, is because it describes a greater circle; and a weight which is farther removed from the centre is made to move through a greater space."

De vi Percussionis. Bononiæ, 1667.
+ Mee, Analyt.
+ Mechanica,

Perhaps Aristotle may have borrowed the idea of virtual velocities, contrasting so strongly with his other physical notions, from some older writer; possibly from Archytas, who, we are told, was the first to reduce the science of mechanics to methodical order; and who by the testimony of his countrymen was gifted with extraordinary talents, although none of his works have come down to us. The other principles and maxims of Aristotle's mechanical philosophy, which we shall have occasion to cite, are scattered through his books on Mechanics, on the Heavens, and in his Physical Lectures, and will therefore follow rather unconnectedly, though we have endeavoured to arrange them with as much regularity as possible.

After defining a body to be that which is divisible in every direction, Aristotle proceeds to inquire how it happens that a body has only the three dimensions of length, breadth, and thickness; and seems to think he has given a reason in saying that, when we speak of two things, we do not say "all," but " both," and three is the first number of which we say "all." When he comes to speak of motion, he says, "If motion is not understood, we cannot but remain ignorant of Nature. Motion appears to be of the nature of continuous quantities, and in continuous quantity infinity first makes its appearance; so as to furnish some with a definition who say that con

Diog. Laert. In vit. Archyt. † De Cuelo, lib. i. c. 1.

« AnteriorContinuar »