Imágenes de páginas
PDF
EPUB

the position of the line of nodes. In all these operations his talent for astronomical inquiries appeared pre-eminent in a variety of new methods by which he combined and availed himself of the observations; but it must be sufficient merely to mention this fact, without entering into any detail. One important result may be mentioned, at which he arrived in the course of them, the constancy of the inclination of the planet's orbit, which naturally strengthened him in his new theory.

Having gone through these preliminary inquiries, he came at last to fix the proportions of the orbit; and, in doing so, he determined, in the first instance, not to assume, as Ptolemy appeared to have done arbitrarily, the bisection of the excentricity, but to investigate its proportion along with the other elements of the orbit, which resolution involved him in much more laborious calculations. After he had gone over all the steps of his theory no less than seventy times-an appalling labour,especially if we remember that logarithms were not then invented-his final result was, that in 1587, on the 6th of March, at 7 23', the longitude of the aphelion of Mars was 4s 28° 48' 55"; that the planet's mean longitude was 65 0° 51′ 35"; that if the semidiameter of the orbit was taken at 100000, the excentricity was 11832; and the excentricity of the equant 18564. He fixed the radius of the greater epicycle at 14988, and that of the smaller at 3628.

When he came to compare the longitudes as given by this, which he afterwards called the vicarious theory, with the observations at opposition, the result seemed to promise him the most brilliant success. His greatest error did not exceed 2'; but, notwithstanding these flattering anticipations, he soon found by a comparison of longitudes out of opposition and of latitudes, that it was yet far from being so complete as he had imagined, and to his infinite vexation he soon found that the labour of four years, which he had expended on this theory, must be considered almost entirely fruitless. Even his favourite principle of dividing the excentricity in a different ratio from Ptolemy, was found to lead him into greater error than if he had retained the old bisection. By restoring that, he made his latitudes niore accurate, but produced a corresponding change for the worse in his longitudes; and although the errors of 8, to which they now

amounted, would probably have been disregarded by former theorists, Kepler could not remain satisfied till they were accounted for. Accordingly he found himself forced to the conclusion that one of the two principles on which this theory rested must be erroneous; either the orbit of the planet is not a perfect circle, or there is no fixed point within it round which it moves with an uniform angular motion. He had once before admitted the possibility of the former of these facts, conceiving it possible that the motion of the planets is not at all curvilinear, but that they move in polygons round the sun, a notion to which he probably inclined in consequence of his favourite harmonics and geometrical figures.

In consequence of the failure of a theory conducted with such care in all its practical details, Kepler determined that his next trial should be of an entirely different complexion. Instead of first satisfying the first inequalities of the planet, and then endeavouring to account for the second inequalities, he resolved to reverse the process, or, in other words, to ascertain as accurately as possible what part of the planet's apparent motion should be referred solely to the optical illusion produced by the motion of the earth, before proceeding to any inquiry of the real inequality of the planet's proper motion. It had been hitherto taken for granted, that the earth moved equably round the centre of its orbit; but Kepler, on resuming the consideration of it, recurred to an opinion he had entertained very early in his astronomical career (rather from his conviction of the existence of general laws, than that he had then felt the want of such a supposition), that it required an equant distinct from its orbit no less than the other planets. He now saw, that if this were admitted, the changes it would everywhere introduce in the optical part of the planet's irregularities might perhaps relieve him from the perplexity in which the vicarious theory had involved him. Accordingly he applied himself with renewed assiduity to the examination of this important question, and the result of his calculations (founded principally on observations of Mars' parallax) soon satisfied him not only that the earth's orbit does require such an equant, but that its centre is placed according to the general law of the bisection of the excentricity which he had previously found

indispensable in the other planets. This was an innovation of the first magnitude, and accordingly Kepler did not venture to proceed farther in his theory, till by evidence of the most varied and satisfactory nature, he had established it beyond the possibility of cavil.

It may be here remarked, that this principle of the bisection of the eccentricity, so familiar to the Ptolemaic astronomers, is identical with the theory afterwards known by the name of the simple elliptic hypothesis, advocated by Seth Ward and others. That hypothesis consisted in supposing the sun to be placed in one focus of the elliptic orbit of the planet, whose angular motion was uniform round the other focus. In Ptolemaic phraseology, that other focus was the centre of the equant, and it is well known that the centre of the ellipse lies in the middle point between the two foci.

It was at this period also, that Kepler first ventured upon the new method of representing inequalities which terminated in one of his most celebrated discoveries. We have already seen, in the account of the "Mysterium Cosmographicum," that he was speculating, even at that time, on the effects of a whirling force exerted by the sun on the planets with diminished energy at increased distances, and on the proportion observed between the distances of the planets from the sun, and their periods of revolution. He seems even then to have believed in the possibility of discovering a relation between the times and distances in different planets. Another analogous consequence of his theory of the radiation of the whirling force would be, that if the same planet should recede to a greater distance from the central body, it would be acted on by a diminished energy of revolution, and consequently, a relation might be found between the velocity at any point of its orbit, and its distance at that point from the sun. Hence he expected to derive a more direct and natural method of calculating the inequalities, than from the imaginary equant. But these ingenious ideas had been checked in the outset by the erroneous belief which Kepler, in common with other astronomers, then entertained of the coincidence of the earth's equant with its orbit; in other words, by the belief that the earth's linear motion was uniform, though it was known not to remain constantly at the same distance from the sun. As soon as this prejudice

[blocks in formation]

orbit AB a b, Q the centre of the equant represented by the equal circle DEde, AB, ab, two equal small arcs described by the planet at the apsides of its orbit: then, according to Ptolemy's principles, the arc D E of the equant would be proportional to the time of passing along AB, on the same scale on which de would represent the time of passing through the equal arc ab.

QD: QA::DE: A B, nearly; and because QS is bisected in C, QA, CA or QD, and SA, are in arithmetical proportion: and, therefore, since an arithmetical mean, when the difference is small, does not differ much from a geometrical mean, QD: QA::SA: QD, nearly. Therefore, DE:AB:: SA:Q D, nearly, and in the same manner de ab::Sa: Qd nearly; and therefore DE: de:: SA: Sa nearly. Therefore at the apsides, the times of passing over equal spaces, on Ptolemy's theory, are nearly as the distances from the sun, and Kepler, with his usual hastiness, immediately concluded that this was the accurate and general law, and that the errors of the old theory arose solely from having departed from it.

It followed immediately from this assumption, that after leaving the point A, the time in which the planet would

arrive at any point P of its orbit would be proportional to, and might be represented by, the sums of all the lines that could be drawn from S to the arc AP, on the same scale that the whole period of revolution would be denoted by the sum of all the lines drawn to every point of the orbit. Kepler's first attempt to verify this supposition approximately, was made by dividing the whole circumference of the orbit into 360 equal parts, and calculating the distances at every one of the points of division. Then supposing the planet to move uniformly, and to remain at the same distance from the sun during the time of passing each one of these divisions, (a supposition which manifestly would not differ much from the former one, and would coincide with it more nearly, the greater was the number of divisions taken) he proceeded to add together these calculated distances, and hoped to find that the time of arriving at any one of the divisions bore the same ratio to the whole period, as the sum of the corresponding set of distances did to the sum of the whole 360.

This theory was erroneous; but by almost miraculous good fortune, he was led by it in the following manner to the true measure. The discovery was a consequence of the tediousness of his first method, which required, in order to know the time of arriving at any point, that the circle should be subdivided, until one of the points of division fell exactly upon the given place. Kepler therefore endeavoured to discover some shorter method of representing these sums of the distances. The idea then occurred to him of employing for that purpose the area inclosed between the two distances, SA, SP, and the arc A P, in imitation of the manner in which he remembered that Archimedes had found the area of the circle, by dividing it into an infinite number of small triangles by lines drawn from the centre. He hoped therefore to find, that the time of passing from A to P bore nearly the same ratio to the whole period of revolution that the area ASP bore to the whole circle.

This last proportion is in fact accurately observed in the revolution of one body round another, in consequence of an attractive force in the central body. Newton afterwards proved this, 'grounding his demonstration upon laws of motion altogether irreconcileable with Kepler's opinions; and it is impossible

not to admire Kepler's singular good fortune in arriving at this correct result in spite, or rather through the means, of his erroneous principles. It is true that the labour which he bestowed unsparingly upon every one of his successive guesses, joined with his admirable candour, generally preserved him from long retaining a theory altogether at variance with observations; and if any relation subsisted between the times and distances which could any way be expressed by any of the geometrical quantities under consideration, he could scarcely have failed-it might be twenty years earlier or twenty years later,-to light upon it at last, having once put his indefatigable fancy upon this scent. But in order to prevent an over-estimate of his merit in detecting this beautiful law of nature, let us for a moment reflect what might have been his fate had he endeavoured in the same manner, and with the same perseverance, to discover a relation, where, in reality, none existed. Let us take for example the inclinations or the excentricities of the planetary orbits, among which no relation has yet been discovered; and if any exists, it is probably of too complicated a nature to be hit at a venture. If Kepler had exerted his ingenuity in this direction, he might have wasted his life in fruitless labour, and whatever reputation he might have left behind him as an industrious calculator, it would have been very far inferior to that which has procured for him the proud title of the "Legislator of the Heavens."

However this may be, the immediate consequence of thus lighting upon the real law observed by the earth in its passage round the sun was, that he found himself in possession of a much more accurate method of representing its inequalities than had been reached by any of his predecessors; and with renewed hopes he again attacked the planet Mars, whose path he was now able to consider undistorted by the illusions arising out of the motion of the earth. Had the path of Mars been accurately circular, or even as nearly approaching a circle as that of the earth, the method he chose of determining its position and size by means of three distances carefully calculated from his observed parallaxes, would have given a satisfactory result; but finding, as he soon did, that almost every set of three distances led him to a different result, he began to suspect another error in the long-received opi

nion, that the orbits of the planets must consist of a combination of circles; he therefore determined, in the first instance, to fix the distances of the planet at the apsides without any reference to the form of the intermediate orbit. Half the difference between these would, of course, be the excentricity of the orbit; and as this quantity came out very nearly the same as had been determined on the vicarious theory, it seemed clear that the error of that theory, whatever it might be, did not lie in these elements. Kepler also found that in the case of this planet likewise, the times of describing equal arcs at the apsides were proportional to its distances from the sun, and he naturally expected that the method of areas would measure the planet's motion with as much accuracy as he had found in the case of the earth. This hope was disappointed: when he calculated the motion of the planet by this method, he obtained places too much advanced when near the apsides, and too little advanced at the mean distances. He did not, on that account, immediately reject the opinion of circular orbits, but was rather inclined to suspect the principle of measurement, at which he felt that he had arrived in rather a precarious manner. He was fully sensible that his areas did not accurately represent the sums of any distances except those measured from the centre of the circle; and for some time he abandoned the hope of being able to use this substitution, which he always considered merely as an approximate representation of the true measure, the sum of the distances. But on examination he found that the errors of this substitution were nearly insensible, and those it did in fact produce, were in the contrary direction of the errors he was at this time combating As soon as he had satisfied himself of this, he ventured once more on the supposition, which by this time had, in his eyes, almost acquired the force of demonstration, that the orbits of the planets are not circular, but of an oval form, retiring within the circle at the mean distances, and coinciding with it at the apsides.

This notion was not altogether new; it had been suggested in the case of Mercury, by Purbach, in his "Theories of the Planets." In the edition of this work published by Reinhold, the pupil of Copernicus, we read the following passage. Sixthly, it appears from what has been said, that the centre of

[ocr errors]

Mercury's epicycle, by reason of the motions above-mentioned, does not, as is the case with the other planets, describe the circumference of a circular deferent, but rather the periphery of a figure resembling a plane oval." To this is added the following note by Reinhold. "The centre of the Moon's epicycle describes a path of a lenticular shape; Mercury's on the contrary is egg-shaped, the big end lying towards his apogee, and the little end towards his perigee*." The excentricity of Mercury's orbit is, in fact, much greater than that of any of the other planets, and the merit of making this first step cannot reasonably be withheld from Purbach and his commentator, although they did not pursue the inquiry so far as Kepler found himself in a condition to do.

Before proceeding to the consideration of the particular oval which Kepler fixed upon in the first instance, it will be necessary, in order to render intelligible the source of many of his doubts and difficulties, to make known something more of his theory of the moving to be carried round in their orbits. force by which he supposed the planets conformity with the plan hitherto pursued, this shall be done as much as possible in his own words.

[ocr errors]

In

'It is one of the commonest axioms in natural philosophy, that if two things always happen together and in the same manner, and admit the same measure, either the one is the cause of the other, or both are the effect of a common cause. In the present case, the increase or languor of motion invariably corresponds with an approach to or departure from the centre of the universe. Therefore, departure of the star, or the departure either the languor is the cause of the of the languor, of both have a common

cause.

that there is a concurrence of any third
But no one can be of opinion
thing to be a common cause of these
two effects, and in the following chap-
ters it will be made clear that there is
thing, since the two are of themselves
no occasion to imagine any such third
sufficient. Now, it is not agreeable to
languor in linear motion should be the
the nature of things that activity or
distance from the centre is conceived
cause of distance from the centre. For,
anteriorly to linear motion.
linear motion cannot exist without dis-

In fact

Parisiis, 1553.
*Theoricæ novæ planetarum. G, Purbachii,

tance from the centre, since it requires space for its accomplishment, but distance from the centre can be conceived without motion. Therefore distance is the cause of the activity of motion, and a greater or less distance of a greater or less delay. And since distance is of the kind of relative quantities, whose essence consists in boundaries, (for there is no efficacy in relation per se without regard to bounds,) it follows that the cause of the varying activity of motion rests in one of the boundaries. But the body of the planet neither becomes heavier by receding, nor lighter by approaching. Besides, it would perhaps be absurd on the very mention of it, that an animal force residing in the moveable body of the planet for the purpose of moving it, should exert and relax itself so often without weariness or decay. It remains, therefore, that the cause of this activity and languor resides at the other boundary, that is, in the very centre of the world, from which the distances are computed. Let us continue our investigation of this moving virtue which resides in the sun, and we shall presently recognize its very close analogy to light. And although this moving virtue cannot be identical with the light of the sun, let others look to it whether the light is employed as a sort of instrument, or vehicle, to convey the moving virtue. There are these seeming contradictions:-first, light is obstructed by opaque bodies, for which reason if the moving virtue travelled on the light, darkness would be followed by a stoppage of the moveable bodies. Again, light flows out in right lines spherically, the moving virtue in right lines also, but cylindrically; that is, it turns in one direction only, from west to east; not in the opposite direction, not towards the poles, &c. But perhaps we shall be able presently to reply to these objections. In conclusion, since there is as much virtue in a large and remote circle as in a narrow and close one, nothing of the virtue perishes in the passage from its source, nothing is scattered between the source and the moveable. Therefore the efflux, like that of light, is not material, and is unlike that of odours, which are accompanied by a loss of substance, unlike heat from a raging furnace, unlike every other emanation by which mediums are filled. It remains, therefore, that as light which illuminates all earthly things, is the immaterial species of that fire which is in

the body of the sun, so this virtue, embracing and moving all the planetary bodies, is the immaterial species of that virtue which resides in the sun itself, of incalculable energy, and so the primary act of all mundane motion. I should like to know who ever said that there was anything material in light!-Guided by our notion of the efflux of this species (or archetype), let us contemplate the more intimate nature of the source itself. For it seems as if something divine were latent in the body of the sun, and comparable to our own soul, whence that species emanates which drives round the planets; just as from the mind of a slinger the species of motion sticks to the stones, and carries them forward, even after he who cast them has drawn back his hand. But to those who wish to proceed soberly, reflections differing a little from these will be offered."

Our readers will, perhaps, be satisfied with the assurance, that these sober considerations will not enable them to form a much more accurate notion of Kepler's meaning than the passages already cited. We shall therefore proceed to the various opinions he entertained on the motion of the planets.

'He considered it as established by his theory, that the centre E of the planet's epicycle (see fig. p. 33.) moved round the circumference of the deferent Dd, according to the law of the planet's distances; the point remaining to be settled was the motion of the planet in the epicycle. If it were made to move according to the same law, so that when the centre of the epicycle reached E, the planet should be at F, taking the angle BEF equal to BSA, it has been shewn (p. 19) that the path of F would still be a circle, excentric from Dd by DA the radius of the epicycle.

But Kepler fancied that he saw many sound reasons why this could not be the true law of motion in the epicycle, on which reasons he relied much more firmly than on the indisputable fact, which he mentions as a collateral proof, that it was contradicted by the observations. Some of these reasons are subjoined: "In the beginning of the work it has been declared to be most absurd, that a planet (even though we suppose it endowed with mind) should form any notion of a centre, and a distance from it, if there be no body in that centre to serve for a distinguishing mark. And although you should say, that the planet

« AnteriorContinuar »