Imágenes de páginas
PDF
EPUB
[blocks in formation]

Ir is generally difficult to trace any branch of human knowledge up to its origin, and more especially when, as in the case of mechanics, it is very closely connected with the immediate wants of mankind. Little has been told to us when we are informed that so soon as a man might wish to remove a heavy stone, he would be led, by natural instinct, to slide under it the end of some long instrument, and that the same instinct would teach him either to raise the further end, or to press it downwards, so as to turn round upon some support placed as near to the stone as possible*." Montucla's history would have lost nothing in value, if, omitting "this philosophical view of the birth of the art," he had contented himself with his previous remark, that there can be little doubt that men were familiar with the use of mechanical contrivances long before the idea occurred of enumerating or describing them, or even of examining very closely the nature and limits of the aid they are capable of affording. The most careless observer indeed could scarcely overlook that the weights heaved up with a lever, or rolled along a slope into their intended places, reached them more slowly than those which the workmen could lift directly in their hands; but it probably needed a much longer time to enable them to see the exact relation which, in these and all other machines, exists between the increase of the power to move, and the decreasing swiftness of the thing moved. In the preface to Galileo's Treatise on Mechanical Science, published in 1592, he is at some pains to set in a clear light the real advantages belonging to the use of machines, "which (says he) I have thought it necessary to do, because, if I mistake not, I see almost all mechanics deceiving themselves in the belief that, by the help of a machine, they can raise a greater weight than they are able to lift by the exertion of the

Histoire des Mathématiques, vol. i. p. 97.

same force without it.-Now if we take any determinate weight, and any force, and any distance whatever, it is beyond doubt that we can move the weight to that distance by means of that force; because even although the force may be exceedingly small, if we divide the weight into a number of fragments, each of which is not too much for our force, and carry these pieces one by one, at length we shall have removed the whole weight; nor can we reasonably say at the end of our work, that this great weight has been moved and carried away by a force less than itself, unless we add that the force has passed several times over the space through which the whole weight has gone but once. From which it appears that the velocity of the force (understanding by velocity the space gone through in a given time) has been as many times greater than that of the weight, as the weight is greater than the force: nor can we on that account say that a great force is overcome by a small one, contrary to nature: then only might we say that nature is overcome when a small force moves a great weight as swiftly as itself, which we assert to be absolutely impossible with any machine either already or hereafter to be contrived. But since it may occasionally happen that we have but a small force, and want to move a great weight without dividing it into pieces, then we must have recourse to a machine by means of which we shall remove the given weight, with the given force, through the required space. But nevertheless the force as before will have to travel over that very same space as many times repeated as the weight surpasses its power, so that, at the end of our work, we shall find that we have derived no other benefit from our machine than that we have carried away the same weight altogether, which if divided into pieces we could have carried without the machine, by the same force, through the same space, in the same time. This is one of the advantages of a machine, because it often happens that we have a lack of force but abundance of time, and that we wish to move great weights all at once."

This compensation of force and time has been fancifully personified by saying that Nature cannot be cheated, and in scientific treatises on mechanics, is called the "principle of virtual velocities," consisting in the theorem that two weights will balance each other on any

machine, no matter how complicated or intricate the connecting contrivances may be, when one weight bears to the other the same proportion that the space through which the latter would be raised bears to that through which the former would sink, in the first instant of their motion, if the machine were stirred by a third force. The whole theory of machines consists merely in generalizing and following out this principle into its consequences; combined, when the machines are in a state of motion, with another principle equally elementary, but to which our present subject does not lead us to allude more particularly.

The credit of making known the principle of virtual velocities is universally given to Galileo; and so far deservedly, that he undoubtedly perceived the importance of it, and by introducing it everywhere into his writings succeeded in recommending it to others; so that five and twenty years after his death, Borelli, who had been one of Galileo's pupils, calls it "that mechanical principle with which everybody is so familiar," and from that time to the present it has continued to be taught as an elementary truth in most systems of mechanics. But although Galileo had the merit in this, as in so many other cases, of familiarizing and reconciling the world to the reception of truth, there are remarkable traces before his time of the employment of this same principle, some of which have been strangely disregarded. Lagrange asserts that the ancients were entirely ignorant of the principle of virtual velocities, although Galileo, to whom he refers it, distinctly mentions that he himself found it in the writings of Aristotle. Montucla quotes a passage from Aristotle's Physics, in which the law is stated generally, but adds that he did not perceive its immediate application to the lever, and other machines. The passage to which Galileo alludes is in Aristotle's Mechanics, where, in discussing the properties of the lever, he says expressly, "the same force will raise a greater weight, in proportion as the force is applied at a greater distance from the fulcrum, and the reason, as I have already said, is because it describes a greater circle; and a weight which is farther removed from the centre is made to move through a greater space."

De vi Percussionis. Bononiæ, 1667.
Mec. Analyt.
* Mechanica,

66

It is true, that in the last mentioned treatise, Aristotle has given other reasons which belong to a very different kind of philosophy, and which may lead us to doubt whether he fully saw the force of the one we have just quoted. It appeared to him not wonderful that so many mechanical paradoxes (as he called them) should be connected with circular motion, since the circle itself seemed of so paradoxical a nature. For, in the first place, it is made up of an immoveable centre, and a moveable radius, qualities which are contrary to each other. 2dly. Its circumference is both convex and concave. 3dly. The motion by which it is described is both forward and backward, for the describing radius comes back to the place from which it started. 4thly. The radius is one; but every point of it moves in describing the circle with a different degree of swiftness."

Perhaps Aristotle may have borrowed the idea of virtual velocities, contrasting so strongly with his other physical notions, from some older writer; possibly from Archytas, who, we are told, was the first to reduce the science of mechanics to methodical order; and who by the testimony of his countrymen was gifted with extraordinary talents, although none of his works have come down to us. The other principles and maxims of Aristotle's mechanical philosophy, which we shall have occasion to cite, are scattered through his books on Mechanics, on the Heavens, and in his Physical Lectures, and will therefore follow rather unconnectedly, though we have endeavoured to arrange them with as much regularity as possible.

After defining a body to be that which is divisible in every direction, Aristotle proceeds to inquire how it happens that a body has only the three dimensions of length, breadth, and thickness; and seems to think he has given a reason in saying that, when we speak of two things, we do not say all," but "both," and three is the first number of which we say "all." When he comes to speak of motion, he says, "If motion is not understood, we cannot but remain ignorant of Nature. Motion appears to be of the nature of continuous quantities, and in continuous quantity infinity first makes its appearance; so as to furnish some with a definition who say that con

* Diog. Laert. In vit. Archyt. De Coelo, lib. i. c. 1.

tinuous quantity is that which is infinitely divisible.-Moreover, unless there be time, space, and a vacuum, it is impossible that there should be motion*."Few propositions of Aristotle's physical philosophy are more notorious than his assertion that nature abhors a vacuum, on which account this last passage is the more remarkable, as he certainly did not go so far as to deny the existence of motion, and therefore asserts here the necessity of that of which he afterwards attempts to show the absurdity.—" Motion is the energy of what exists in power so far forth as so existing. It is that act of a moveable which belongs to its power of moving."+ After struggling through such passages as the preceding we come at last to a resting-place." It is difficult to understand what motion is."-When the same question was once proposed to another Greek philosopher, he walked away, saying, "I cannot tell you, but I will show you; an answer intrinsically worth more than all the subtleties of Aristotle, who was not humbleminded enough to discover that he was tasking his genius beyond the limits marked out for human comprehension.

[ocr errors]

He labours in the same manner and with the same success to vary the idea of space. He begins the next book with declaring, that those who say there is a vacuum assert the existence of space; for a vacuum is space, in which there is no substance;" and after a long and tedious reasoning concludes that, "not only what space is, but also whether there be such a thing, cannot but be doubted." Of time he is content to say merely, that "it is clear that time is not motion, but that without motion there would be no time;" and there is perhaps little fault to be found with this remark, understanding motion in

Phys. lib. i. c. 3. + Lib. iii. c. 2. The Aristotelians distinguished between things as existing in act or energy (vegy) and things in capacity or power (duva). For the advantage of those who may think the distinction worth attending to, we give an illus. tration of Aristotle's meaning, from a very acute and learned commentator:-" It (motion) is something more than dead capacity; something less than per fect actuality; capacity roused, and striving to quit its latent character; not the capable brass, nor yet the actual statue, but the capacity in energy; that is to say, the brass in fusion while it is becoming the

statue and is not yet become."-" The bow moves

not because it may be bent, nor because it is bent; but the motion lies between; lies in an imperfect and obscure union of the two together; is the actuality (if I may so say) even of capacity itself: imperfect and obscure, because such is capacity to which it belongs."-Harris, Philosophical ArrangeLib. iv. c. 1. § Lib. iv. c. 11.

ments.

the general sense in which Aristotle here applies it, of every description of change.

By

Proceeding after these remarks on the nature of motion in general to the motion of bodies, we are told that “ all local motion is either straight, circular, or compounded of these two; for these two are the only simple sorts of motion. Bodies are divided into simple and concrete; simple bodies are those which have naturally a principle of motion, as fire and earth, and their kinds. simple motion is meant the motion of a simple body." By these expressions Aristotle did not mean that a simple body cannot have what he calls a compound motion, but in that case he called the motion violent or unnatural; this division of motion into natural and violent runs through the whole of the mechanical philosophy founded upon his principles. "Circular motion is the only one which can be endless;" the reason of which is given in another place: for "that cannot be doing, which cannot be done; and therefore it cannot be that a body should be moving towards a point (i. e. the end of an infinite straight line) whither no motion is sufficient to bring it." Bacon seems to have had these passages in view when he indulged in the reflections which we have quoted in page 14. "There are four kinds of motion of one thing by another: Drawing, Pushing, Carrying, Rolling. Of these, Carrying and Rolling may be referred to Drawing and Pushing.§-The prime mover and the thing moved are always in contact."

The principle of the composition of motions is stated very plainly: "when a moveable is urged in two directions with motions bearing any ratio to each other, it moves necessarily in a straight line, which is the diameter of the figure formed by drawing the two lines of direction in that ratio;"|| and adds, in a 66 but when Singularly curious passage, it is urged for any time with two motions which have an indefinitely small ratio one to another, the motion cannot be straight, so that a body describes a curve, when it is urged by two motions bearing an indefinitely small ratio one to another, and lasting an indefinitely small time."

[blocks in formation]

He seemed on the point of discovering some of the real laws of motion, when he was led to ask-"Why are bodies in motion more easily moved than those which are at rest?-And why does the motion cease of things cast into the air? Is it that the force has ceased which sent them forth, or is there a struggle against the motion, or is it through the disposition to fall, does it become stronger than the projectile force, or is it foolish to entertain doubts on this question, when the body has quitted the principle of its motion?" A commentator at the close of the sixteenth century says on this passage: "They fall because every thing recurs to its nature; for if you throw a stone a thousand times into the air, it I will never accustom itself to move upwards." Perhaps we shall now find it difficult not to smile at the idea we may form of this luckless experimentalist, teaching stones to fly; yet it may be useful to remember that it is only because we have already collected an opinion from the results of a vast number of observations in the daily experience of life, that our ridicule would not be altogether misplaced, and that we are totally unable to determine by any kind of reasoning, unaccompanied by experiment, whether a stone thrown into the air would fall again to the earth, or move for ever upwards, or in any other conceivable manner and direction.

The opinion which Aristotle held, that motion must be caused by something in contact with the body moved, led him to his famous theory that falling bodies are accelerated by the air through which they pass. We will show how it was attempted to explain this process when we come to speak of more modern authors. He classed natural bodies into heavy and light, remarking at the same time that it is clear that "there are some bodies possessing neither gravity nor levity*." By light bodies he understood those which have a natural tendency to move from the earth, observing that "that which is lighter is not always lightt." He maintained that the

[blocks in formation]

heavenly bodies were altogether devoid of gravity; and we have already had occasion to mention his assertion, that a large body falls faster than a small one in proportion to its weight*. With this opinion may be classed another great mistake, in maintaining that the same bodies fall through different mediums, as air or water, with velocities reciprocally proportional to their densities. By a singular inversion of experimental science, Cardan, relying on this assertion, proposed in the sixteenth century to determine the densities of air and water by observing the different times taken by a stone in falling through themt. Galileo inquired afterwards why the experiment should not be made with a cork, which pertinent question put an end to the theory.

There are curious traces still preserved in the poem of Lucretius of a mechanical philosophy, of which the credit is in general given to Democritus, where many principles are inculcated strongly at variance with Aristotle's notions. We find absolute levity denied, and not only the assertion that in a vacuum all things would fall, but that they would fall with the same velocity; and the inequalities which we observe are attributed to the right cause, the impediment of the air, although the error remains of believing the velocity of bodies falling through the air to be proportional to their weight. Such specimens of this earlier philosophy

[ocr errors]

Phys., lib. iv. c. 8. De Proport. Basilea, 1570. "Nunc locus est, ut opinor, in his illud quoque rebus

Confirmare tibi, nullam rem posse suâ vi
Corpoream sursum ferri, sursumque meare.-
Nec quom subsiliunt ignes ad tecta domorum,
Et celeri flammâ degustant tigna trabeisque
Sponte suâ facere id sine vi subicente putandum est.
--Nonne vides etiam quantâ vi tigna trabeisque
Respuat humor aquæ? Nam quod magi' mersi-
mus altum

Directâ et magnâ vi multi pressimus ægre:-
Tam cupide sursum revomit magis atque remittit
Plus ut parte foras emergant, exsiliautque:
-Nec tamen hæc, quantu'st in sedubitamus, opinor,
Quinvacuum per inane deorsum cuncta ferantur,
Sic igitur debent flammæ quoque posse per auras
Aeris expressæ sursum subsidere, quamquam
Pondera quantum in se est deorsum deducere pug.

[blocks in formation]

may well indispose us towards Aristotle, who was as successful in the science of motion as he was in astronomy in suppressing the knowledge of a theory so much sounder than that which he imposed so long upon the credulity of his blinded admirers.

An agreeable contrast to Aristotle's mystical sayings and fruitless syllogisms is presented in Archimedes book on Equilibrium, in which he demonstrates very satisfactorily, though with greater cumbrousness of apparatus than is now thought necessary, the principal_properties of the lever. This and the Treatise on the Equilibrium of Floating Bodies are the only mechanical works which have reached us of this writer, who was by common consent one of the most accomplished mathematicians of antiquity. Ptolemy the astronomer wrote also a Treatise on Mechanics, now lost, which probably contained much that would be interesting in the history of mechanics; for Pappus says, in the Preface to the Eighth Book of his Mathematical Collections: "There is no occasion for me to explain what is meant by a heavy, and what by a light body, and why bodies are carried up and down, and in what sense these very words' up' and down' are to be taken, and by what limits they are bounded; for all this is declared in Ptolemy's Mechanics." This book of Ptolemy's appears to have been also known by Eutocius, a commentator of Archimedes, who lived about the end of the fifth century of our era; he intimates that the doctrines contained in it are grounded upon Aristotle's; if so, its loss is less to be lamented. Pappus's own book deserves attention for the enumeration which he makes of the mechanical powers, namely, the wheel and axle, the fever, pullies, the wedge and the screw. He gives the credit to Hero and Philo of having shown, in works which have not reached us, that the theory of all these machines is the same. In Pappus we also find the first attempt to discover the force necessary to support a given weight on an inclined plane. This in fact is involved in the theory of the screw; and the same vicious reasoning which Pappus employs on this occasion was probably found in those treatises which he quotes with so much approbation. Numerous as are the faults of his pretended demon

Math. Coll. Pisani, 1662.

stration, it was received undoubtingly for a long period.

The credit of first giving the true theory of equilibrium on the inclined plane is usually ascribed to Stevin, although, as we shall presently show, with very little reason. Stevin supposed a chain to be placed over two inclined planes, and to hang down in the manner represented in the figure. He then urged that the chain would be in equilibrium; for otherwise, it would incessantly continue in motion, if there were any cause why it should begin to move. This being conceded, he remarks further, that the parts AD and BD are also in equilibrium, being exactly similar to each

other; and therefore if they are taken away, the remaining parts AC and B Č will also be in equilibrium. The weights of these parts are proportional to the lengths AC and BC; and hence Stevin concluded that two weights would balance on two inclined planes, which are to each other as the lengths of the planes included between the same parallels to the horizon.* This conclusion is the correct one, and there is certainly great ingenuity in this contrivance to facilitate the demonstration; it must not however be mistaken for an à priori proof, as it sometimes seems to have been: we should remember that the experiments which led to the principle of virtual velocities are also necessary to show the absurdity of supposing a perpetual motion, which is made the foundation of this theorem. That principle had been applied directly to determine the same proportion in a work written long before, where it has remained singularly concealed from the notice of most who have written on this subject. The book bears the name of Jordanus, who lived at Namur in the thirteenth century; but Commandine, who refers to it in his Commentary on Pappus, considers it as the work of an earlier period. The author takes the principle of virtual velocities for the groundwork of his explanations, both of the lever and inclined plane; the latter will not occupy much space, and in an historical point of view is too curious to be omitted.

Euvres Mathématiques. Leyde. 1634,

« AnteriorContinuar »